ColumnTransformer with TfidfVectorizer produces “empty vocabulary” error

后端 未结 2 1662
灰色年华
灰色年华 2020-12-06 08:19

I am running a very simple experiment with ColumnTransformer with an intent to transform an array of columns, [\"a\"] in this example:

from skle         


        
相关标签:
2条回答
  • 2020-12-06 08:26

    That's because you are providing ["a"] instead of "a" in ColumnTransformer. According to the documentation:

    A scalar string or int should be used where transformer expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer.

    Now, TfidfVectorizer requires a single iterator of strings for input (so a 1-d array of strings). But since you are sending a list of column names in ColumnTransformer (even though that list only contains a single column), it will be 2-d array that will be passed to TfidfVectorizer. And hence the error.

    Change that to:

    clmn = ColumnTransformer([("tfidf", tfidf, "a")],
                             remainder="passthrough")
    

    For more understanding, try using the above things to select data from a pandas DataFrame. Check the format (dtype, shape) of the returned data when you do:

    dataset['a']
    
    vs 
    
    dataset[['a']]
    

    Update: @SergeyBushmanov, Regarding your comment on the other answer, I think that you are misinterpreting the documentation. If you want to do tfidf on two columns, then you need to pass two transformers. Something like this:

    tfidf_1 = TfidfVectorizer(min_df=0)
    tfidf_2 = TfidfVectorizer(min_df=0)
    clmn = ColumnTransformer([("tfidf_1", tfidf_1, "a"), 
                              ("tfidf_2", tfidf_2, "b")
                             ],
                             remainder="passthrough")
    
    0 讨论(0)
  • 2020-12-06 08:34

    we can create a custom tfidf transformer, which can take a array of columns and then join them before applying .fit() or .transform().

    Try this!

    from sklearn.base import BaseEstimator,TransformerMixin
    
    class custom_tfidf(BaseEstimator,TransformerMixin):
        def __init__(self,tfidf):
            self.tfidf = tfidf
    
        def fit(self, X, y=None):
            joined_X = X.apply(lambda x: ' '.join(x), axis=1)
            self.tfidf.fit(joined_X)        
            return self
    
        def transform(self, X):
            joined_X = X.apply(lambda x: ' '.join(x), axis=1)
    
            return self.tfidf.transform(joined_X)        
    
    import pandas as pd
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.compose import ColumnTransformer
    dataset = pd.DataFrame({"a":["word gone wild","word gone with wind"],
                            "b":[" gone fhgf wild","gone with wind"],
                            "c":[1,2]})
    tfidf = TfidfVectorizer(min_df=0)
    
    clmn = ColumnTransformer([("tfidf", custom_tfidf(tfidf), ['a','b'])],remainder="passthrough")
    clmn.fit_transform(dataset)
    
    #
    array([[0.36439074, 0.51853403, 0.72878149, 0.        , 0.        ,
            0.25926702, 1.        ],
           [0.        , 0.438501  , 0.        , 0.61629785, 0.61629785,
            0.2192505 , 2.        ]])
    

    P.S. : May be you might want to create a tfidf vectorizer for each column, then create a dictionary with key as column name and value as fitted vectorizer. This dictionary can be used during transform of corresponding columns

    0 讨论(0)
提交回复
热议问题