Say I have a data.frame
that looks like this
df <- data.frame(AAA = rep(c(NA,sample(1:10, 1)),5),
BBB = rep(c(NA,sample(1:10, 1)),5),
CC
Using dplyr
library(dplyr)
df %>%
mutate(CCC=lag(CCC)) %>%
na.omit()
Or using data.table
library(data.table)
na.omit(setDT(df)[, CCC:=c(NA, CCC[-.N])])
You can shift everything down by one with:
df['CCC'] <- c(NA, head(df['CCC'], dim(df)[1] - 1)[[1]])
To delete rows with only NA
values, do:
df <- df[apply(df, 1, function(x) !all(is.na(x))), ]
Use a combination of the very efficient transform
and na.omit
functions
df <- na.omit(transform(df, CCC = c(NA, CCC[-nrow(df)])))