I have a set of integers. I want to find the longest increasing subsequence of that set using dynamic programming.
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
even though there is a way by which you can solve this in O(nlogn) time(this solves in O(n^2) time) but still this way gives the dynamic programming approach which is also good .
here is java O(nlogn) implementation
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
//TreeSet can be used
OK, I will describe first the simplest solution which is O(N^2), where N is the size of the collection. There also exists a O(N log N) solution, which I will describe also. Look here for it at the section Efficient algorithms.
I will assume the indices of the array are from 0 to N - 1. So let's define DP[i]
to be the length of the LIS (Longest increasing subsequence) which is ending at element with index i
. To compute DP[i]
we look at all indices j < i
and check both if DP[j] + 1 > DP[i]
and array[j] < array[i]
(we want it to be increasing). If this is true we can update the current optimum for DP[i]
. To find the global optimum for the array you can take the maximum value from DP[0...N - 1]
.
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
I use the array prev
to be able later to find the actual sequence not only its length. Just go back recursively from bestEnd
in a loop using prev[bestEnd]
. The -1
value is a sign to stop.
O(N log N)
solution:Let S[pos]
be defined as the smallest integer that ends an increasing sequence of length pos
. Now iterate through every integer X
of the input set and do the following:
If X
> last element in S
, then append X
to the end of S
. This essentialy means we have found a new largest LIS
.
Otherwise find the smallest element in S
, which is >=
than X
, and change it to X
.
Because S
is sorted at any time, the element can be found using binary search in log(N)
.
Total runtime - N
integers and a binary search for each of them - N * log(N) = O(N log N)
Now let's do a real example:
Collection of integers:
2 6 3 4 1 2 9 5 8
Steps:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
So the length of the LIS is 5
(the size of S).
To reconstruct the actual LIS
we will again use a parent array.
Let parent[i]
be the predecessor of element with index i
in the LIS
ending at element with index i
.
To make things simpler, we can keep in the array S
, not the actual integers, but their indices(positions) in the set. We do not keep {1, 2, 4, 5, 8}
, but keep {4, 5, 3, 7, 8}
.
That is input[4] = 1, input[5] = 2, input[3] = 4, input[7] = 5, input[8] = 8.
If we update properly the parent array, the actual LIS is:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
Now to the important thing - how do we update the parent array? There are two options:
If X
> last element in S
, then parent[indexX] = indexLastElement
. This means the parent of the newest element is the last element. We just prepend X
to the end of S
.
Otherwise find the index of the smallest element in S
, which is >=
than X
, and change it to X
. Here parent[indexX] = S[index - 1]
.
The following C++ implementation includes also some code that builds the actual longest increasing subsequence using an array called prev
.
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
Implementation with no stack just reverse the vector
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
This is a Java implementation in O(n^2). I just did not use Binary Search to find the smallest element in S, which is >= than X. I just used a for loop. Using Binary Search would make the complexity at O(n logn)
public static void olis(int[] seq){
int[] memo = new int[seq.length];
memo[0] = seq[0];
int pos = 0;
for (int i=1; i<seq.length; i++){
int x = seq[i];
if (memo[pos] < x){
pos++;
memo[pos] = x;
} else {
for(int j=0; j<=pos; j++){
if (memo[j] >= x){
memo[j] = x;
break;
}
}
}
//just to print every step
System.out.println(Arrays.toString(memo));
}
//the final array with the LIS
System.out.println(Arrays.toString(memo));
System.out.println("The length of lis is " + (pos + 1));
}
Here is a Scala implementation of the O(n^2) algorithm:
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}