numpy subtract/add 1d array from 2d array

后端 未结 2 623
北海茫月
北海茫月 2020-12-06 04:57

I have the following 2D-array:

a = array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 7,  8,  9],
           [10, 11, 12],
           [13, 14, 15]])
         


        
相关标签:
2条回答
  • 2020-12-06 05:26

    As Divakar specified in the comments, just add a new axis to b.

    I suggest you read more about broadcasting which is very often useful to vectorize computations in numpy: interestingly enough, a.transpose() - b wouldn't have raised an error (you'd need to transpose the result again to obtain your desired output).

    In this computaion, the first array's shape is (3, 5), and b.shape is (5,). So the shape of b corresponds to the tail of the shape of a, and broadcasting can happen. This is not the case when the shape of the first array is (5, 3), hence the error you obtained.

    Here are some runtime tests to compare the speeds of the suggested answers, with your values for a and b : you can see that the differences are not really significant

    In [9]: %timeit (a.T - b).T
    Out[9]: 1000000 loops, best of 3: 1.32 µs per loop
    
    In [10]: %timeit a - b[:,None]
    Out[10]: 1000000 loops, best of 3: 1.25 µs per loop
    
    In [11]: %timeit a - b[None].T
    Out[11]: 1000000 loops, best of 3: 1.3 µs per loop
    
    0 讨论(0)
  • 2020-12-06 05:27

    You need to convert array b to a (2, 1) shape array, use None or numpy.newaxis in the index tuple. Here is the Indexing of Numpy array.

    You can do it Like:

    import numpy
    
    a = numpy.array([[ 1,  2,  3],
               [ 4,  5,  6],
               [ 7,  8,  9],
               [10, 11, 12],
               [13, 14, 15]])
    
    b = numpy.array([ 1,  2,  3,  4,  5])
    c=a - b[:,None]
    print c
    

    Output:

    Out[2]: 
    array([[ 0,  1,  2],
           [ 2,  3,  4],
           [ 4,  5,  6],
           [ 6,  7,  8],
           [ 8,  9, 10]])
    
    0 讨论(0)
提交回复
热议问题