Here is some kind of funny solution using lazy evaluation. First, construct the generator object enumerate_object
:
template<typename Iterable>
class enumerate_object
{
private:
Iterable _iter;
std::size_t _size;
decltype(std::begin(_iter)) _begin;
const decltype(std::end(_iter)) _end;
public:
enumerate_object(Iterable iter):
_iter(iter),
_size(0),
_begin(std::begin(iter)),
_end(std::end(iter))
{}
const enumerate_object& begin() const { return *this; }
const enumerate_object& end() const { return *this; }
bool operator!=(const enumerate_object&) const
{
return _begin != _end;
}
void operator++()
{
++_begin;
++_size;
}
auto operator*() const
-> std::pair<std::size_t, decltype(*_begin)>
{
return { _size, *_begin };
}
};
Then, create a wrapper function enumerate that will deduce the template arguments and return the generator:
template<typename Iterable>
auto enumerate(Iterable&& iter)
-> enumerate_object<Iterable>
{
return { std::forward<Iterable>(iter) };
}
You can now use your function that way:
int main()
{
std::vector<double> vec = { 1., 2., 3., 4., 5. };
for (auto&& a: enumerate(vec)) {
size_t index = std::get<0>(a);
double& value = std::get<1>(a);
value += index;
}
}
The implementation above is a mere toy: it should work with both const
and non-const
lvalue-references as well as rvalue-references, but has a real cost for the latter though, considering that it copies the whole iterable object several times. This problem could surely be solved with additional tweaks.
Since C++17, decomposition declarations even allow you to have the cool Python-like syntax to name the index and the value directly in the for
initializer:
int main()
{
std::vector<double> vec = { 1., 2., 3., 4., 5. };
for (auto&& [index, value] : enumerate(vec)) {
value += index;
}
}
A C++-compliant compiler decomposes auto&&
inferring index
as std::size_t&&
and value
as double&
.