I\'m looking for a fast way to interconvert between linear and multidimensional indexing in Numpy.
To make my usage concrete, I have a large collection of N partic
You can simply calculate the index of each bin:
box_indices = numpy.dot(ndims**numpy.arange(ndims), binassign)
The scalar product simply does 1*x0 + 5*x1 + 5*5*x2 +… This is done very efficiently through NumPy's dot()
.
Although I very much like EOL's answer, I wanted to generalize it a bit for non-uniform numbers of bins along each direction, and also to highlight the differences between C and F styles of ordering. Here is an example solution:
ndims = 5
N = 10
# Define bin boundaries
binbnds = ndims*[None]
nbins = []
for idim in xrange(ndims):
binbnds[idim] = numpy.linspace(-10.0,10.0,numpy.random.randint(2,15))
binbnds[idim][0] = -float('inf')
binbnds[idim][-1] = float('inf')
nbins.append(binbnds[idim].shape[0]-1)
nstates = numpy.cumprod(nbins)[-1]
# Define variable values for N particles in ndims dimensions
p = numpy.random.normal(size=(N,ndims))
# Assign to bins along each dimension
binassign = ndims*[None]
for idim in xrange(ndims):
binassign[idim] = numpy.digitize(p[:,idim],binbnds[idim]) - 1
binassign = numpy.array(binassign)
# multidimensional array with elements mapping from multidim to linear index
# Two different arrays for C vs F ordering
linind_C = numpy.arange(nstates).reshape(nbins,order='C')
linind_F = numpy.arange(nstates).reshape(nbins,order='F')
and now make the conversion
# Fast conversion to linear index
b_F = numpy.cumprod([1] + nbins)[:-1]
b_C = numpy.cumprod([1] + nbins[::-1])[:-1][::-1]
box_index_F = numpy.dot(b_F,binassign)
box_index_C = numpy.dot(b_C,binassign)
and to check for correctness:
# Check
print 'Checking correct mapping for each particle F order'
for k in xrange(N):
ii = box_index_F[k]
jj = linind_F[tuple(binassign[:,k])]
print 'particle %d %s (%d %d)' % (k,ii == jj,ii,jj)
print 'Checking correct mapping for each particle C order'
for k in xrange(N):
ii = box_index_C[k]
jj = linind_C[tuple(binassign[:,k])]
print 'particle %d %s (%d %d)' % (k,ii == jj,ii,jj)
And for completeness, if you want to go back from the 1d index to the multidimensional index in a fast, vectorized-style way:
print 'Convert C-style from linear to multi'
x = box_index_C.reshape(-1,1)
bassign_rev_C = x / b_C % nbins
print 'Convert F-style from linear to multi'
x = box_index_F.reshape(-1,1)
bassign_rev_F = x / b_F % nbins
and again to check:
print 'Check C-order'
for k in xrange(N):
ii = tuple(binassign[:,k])
jj = tuple(bassign_rev_C[k,:])
print ii==jj,ii,jj
print 'Check F-order'
for k in xrange(N):
ii = tuple(binassign[:,k])
jj = tuple(bassign_rev_F[k,:])
print ii==jj,ii,jj