There is a socket related function call in my code, that function is from another module thus out of my control, the problem is that it blocks for hours occasionally, which
Here's a timeout function I think I found via google and it works for me.
From: http://code.activestate.com/recipes/473878/
def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None):
'''This function will spwan a thread and run the given function using the args, kwargs and
return the given default value if the timeout_duration is exceeded
'''
import threading
class InterruptableThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = default
def run(self):
try:
self.result = func(*args, **kwargs)
except:
self.result = default
it = InterruptableThread()
it.start()
it.join(timeout_duration)
if it.isAlive():
return it.result
else:
return it.result
I'm not sure how cross-platform this might be, but using signals and alarm might be a good way of looking at this. With a little work you could make this completely generic as well and usable in any situation.
http://docs.python.org/library/signal.html
So your code is going to look something like this.
import signal
def signal_handler(signum, frame):
raise Exception("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(10) # Ten seconds
try:
long_function_call()
except Exception, msg:
print "Timed out!"
I prefer a context manager approach because it allows the execution of multiple python statements within a with time_limit
statement. Because windows system does not have SIGALARM
, a more portable and perhaps more straightforward method could be using a Timer
from contextlib import contextmanager
import threading
import _thread
class TimeoutException(Exception):
def __init__(self, msg=''):
self.msg = msg
@contextmanager
def time_limit(seconds, msg=''):
timer = threading.Timer(seconds, lambda: _thread.interrupt_main())
timer.start()
try:
yield
except KeyboardInterrupt:
raise TimeoutException("Timed out for operation {}".format(msg))
finally:
# if the action ends in specified time, timer is canceled
timer.cancel()
import time
# ends after 5 seconds
with time_limit(5, 'sleep'):
for i in range(10):
time.sleep(1)
# this will actually end after 10 seconds
with time_limit(5, 'sleep'):
time.sleep(10)
The key technique here is the use of _thread.interrupt_main
to interrupt the main thread from the timer thread. One caveat is that the main thread does not always respond to the KeyboardInterrupt
raised by the Timer
quickly. For example, time.sleep()
calls a system function so a KeyboardInterrupt
will be handled after the sleep
call.
An improvement on @rik.the.vik's answer would be to use the with statement to give the timeout function some syntactic sugar:
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
try:
with time_limit(10):
long_function_call()
except TimeoutException as e:
print("Timed out!")
Here's a Linux/OSX way to limit a function's running time. This is in case you don't want to use threads, and want your program to wait until the function ends, or the time limit expires.
from multiprocessing import Process
from time import sleep
def f(time):
sleep(time)
def run_with_limited_time(func, args, kwargs, time):
"""Runs a function with time limit
:param func: The function to run
:param args: The functions args, given as tuple
:param kwargs: The functions keywords, given as dict
:param time: The time limit in seconds
:return: True if the function ended successfully. False if it was terminated.
"""
p = Process(target=func, args=args, kwargs=kwargs)
p.start()
p.join(time)
if p.is_alive():
p.terminate()
return False
return True
if __name__ == '__main__':
print run_with_limited_time(f, (1.5, ), {}, 2.5) # True
print run_with_limited_time(f, (3.5, ), {}, 2.5) # False
The only "safe" way to do this, in any language, is to use a secondary process to do that timeout-thing, otherwise you need to build your code in such a way that it will time out safely by itself, for instance by checking the time elapsed in a loop or similar. If changing the method isn't an option, a thread will not suffice.
Why? Because you're risking leaving things in a bad state when you do. If the thread is simply killed mid-method, locks being held, etc. will just be held, and cannot be released.
So look at the process way, do not look at the thread way.