For 1 <= N <= 1000000000
, I need to compute 2N mod 1000000007
, and it must be really fast!
My current approach i
This method doesn't use recursion with O(log(n)) complexity. Check this out.
#define ull unsigned long long
#define MODULO 1000000007
ull PowMod(ull n)
{
ull ret = 1;
ull a = 2;
while (n > 0) {
if (n & 1) ret = ret * a % MODULO;
a = a * a % MODULO;
n >>= 1;
}
return ret;
}
And this is pseudo from Wikipedia (see Right-to-left binary method section)
function modular_pow(base, exponent, modulus)
Assert :: (modulus - 1) * (base mod modulus) does not overflow base
result := 1
base := base mod modulus
while exponent > 0
if (exponent mod 2 == 1):
result := (result * base) mod modulus
exponent := exponent >> 1
base := (base * base) mod modulus
return result
It can be solved in O((log n)^2). Try this approach:-
unsigned long long int fastspcexp(unsigned long long int n)
{
if(n==0)
return 1;
if(n%2==0)
return (((fastspcexp(n/2))*(fastspcexp(n/2)))%1000000007);
else
return ( ( ((fastspcexp(n/2)) * (fastspcexp(n/2)) * 2) %1000000007 ) );
}
This is a recursive approach and is pretty fast enough to meet the time requirements in most of the programming competitions.
You can solve it in O(log n)
.
For example, for n = 1234 = 10011010010 (in base 2) we have n = 2 + 16 + 64 + 128 + 1024, and thus 2^n = 2^2 * 2^16 * 2^64 * 2^128 * 2 ^ 1024.
Note that 2^1024 = (2^512)^2, so that, given you know 2^512, you can compute 2^1024 in a couple of operations.
The solution would be something like this (pseudocode):
const ulong MODULO = 1000000007;
ulong mul(ulong a, ulong b) {
return (a * b) % MODULO;
}
ulong add(ulong a, ulong b) {
return (a + b) % MODULO;
}
int[] decompose(ulong number) {
//for 1234 it should return [1, 4, 6, 7, 10]
}
//for x it returns 2^(2^x) mod MODULO
// (e.g. for x = 10 it returns 2^1024 mod MODULO)
ulong power_of_power_of_2_mod(int power) {
ulong result = 1;
for (int i = 0; i < power; i++) {
result = mul(result, result);
}
return result;
}
//for x it returns 2^x mod MODULO
ulong power_of_2_mod(int power) {
ulong result = 1;
foreach (int metapower in decompose(power)) {
result = mul(result, power_of_power_of_2_mod(metapower));
}
return result;
}
Note that O(log n)
is, in practice, O(1)
for ulong
arguments (as log n < 63); and that this code is compatible with any uint
MODULO (MODULO < 2^32), independent of whether MODULO is prime or not.
This will be faster (code in C):
typedef unsigned long long uint64;
uint64 PowMod(uint64 x, uint64 e, uint64 mod)
{
uint64 res;
if (e == 0)
{
res = 1;
}
else if (e == 1)
{
res = x;
}
else
{
res = PowMod(x, e / 2, mod);
res = res * res % mod;
if (e % 2)
res = res * x % mod;
}
return res;
}
If u also want to store that array ie. (2^i)%mod [i=0 to whatever] than:
long mod = 1000000007;
long int pow_mod[ele]; //here 'ele' = maximum power upto which you want to store 2^i
pow_mod[0]=1; //2^0 = 1
for(int i=1;i<ele;++i){
pow_mod[i] = (pow_mod[i-1]*2)%mod;
}
I hope it'll be helpful to someone.