Is there a numpy-thonic way, e.g. function, to find the nearest value in an array?
Example:
np.find_nearest( array, value )
import numpy as np
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
array = np.random.random(10)
print(array)
# [ 0.21069679 0.61290182 0.63425412 0.84635244 0.91599191 0.00213826
# 0.17104965 0.56874386 0.57319379 0.28719469]
value = 0.5
print(find_nearest(array, value))
# 0.568743859261
This is a vectorized version of unutbu's answer:
def find_nearest(array, values):
array = np.asarray(array)
# the last dim must be 1 to broadcast in (array - values) below.
values = np.expand_dims(values, axis=-1)
indices = np.abs(array - values).argmin(axis=-1)
return array[indices]
image = plt.imread('example_3_band_image.jpg')
print(image.shape) # should be (nrows, ncols, 3)
quantiles = np.linspace(0, 255, num=2 ** 2, dtype=np.uint8)
quantiled_image = find_nearest(quantiles, image)
print(quantiled_image.shape) # should be (nrows, ncols, 3)
Maybe helpful for ndarrays
:
def find_nearest(X, value):
return X[np.unravel_index(np.argmin(np.abs(X - value)), X.shape)]
IF your array is sorted and is very large, this is a much faster solution:
def find_nearest(array,value):
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
return array[idx-1]
else:
return array[idx]
This scales to very large arrays. You can easily modify the above to sort in the method if you can't assume that the array is already sorted. It’s overkill for small arrays, but once they get large this is much faster.