Is there a numpy-thonic way, e.g. function, to find the nearest value in an array?
Example:
np.find_nearest( array, value )
With slight modification, the answer above works with arrays of arbitrary dimension (1d, 2d, 3d, ...):
def find_nearest(a, a0):
"Element in nd array `a` closest to the scalar value `a0`"
idx = np.abs(a - a0).argmin()
return a.flat[idx]
Or, written as a single line:
a.flat[np.abs(a - a0).argmin()]
I think the most pythonic way would be:
num = 65 # Input number
array = n.random.random((10))*100 # Given array
nearest_idx = n.where(abs(array-num)==abs(array-num).min())[0] # If you want the index of the element of array (array) nearest to the the given number (num)
nearest_val = array[abs(array-num)==abs(array-num).min()] # If you directly want the element of array (array) nearest to the given number (num)
This is the basic code. You can use it as a function if you want
import numpy as np
def find_nearest(array, value):
array = np.array(array)
z=np.abs(array-value)
y= np.where(z == z.min())
m=np.array(y)
x=m[0,0]
y=m[1,0]
near_value=array[x,y]
return near_value
array =np.array([[60,200,30],[3,30,50],[20,1,-50],[20,-500,11]])
print(array)
value = 0
print(find_nearest(array, value))
Here is a version with scipy for @Ari Onasafari, answer "to find the nearest vector in an array of vectors"
In [1]: from scipy import spatial
In [2]: import numpy as np
In [3]: A = np.random.random((10,2))*100
In [4]: A
Out[4]:
array([[ 68.83402637, 38.07632221],
[ 76.84704074, 24.9395109 ],
[ 16.26715795, 98.52763827],
[ 70.99411985, 67.31740151],
[ 71.72452181, 24.13516764],
[ 17.22707611, 20.65425362],
[ 43.85122458, 21.50624882],
[ 76.71987125, 44.95031274],
[ 63.77341073, 78.87417774],
[ 8.45828909, 30.18426696]])
In [5]: pt = [6, 30] # <-- the point to find
In [6]: A[spatial.KDTree(A).query(pt)[1]] # <-- the nearest point
Out[6]: array([ 8.45828909, 30.18426696])
#how it works!
In [7]: distance,index = spatial.KDTree(A).query(pt)
In [8]: distance # <-- The distances to the nearest neighbors
Out[8]: 2.4651855048258393
In [9]: index # <-- The locations of the neighbors
Out[9]: 9
#then
In [10]: A[index]
Out[10]: array([ 8.45828909, 30.18426696])
Here is a fast vectorized version of @Dimitri's solution if you have many values
to search for (values
can be multi-dimensional array):
#`values` should be sorted
def get_closest(array, values):
#make sure array is a numpy array
array = np.array(array)
# get insert positions
idxs = np.searchsorted(array, values, side="left")
# find indexes where previous index is closer
prev_idx_is_less = ((idxs == len(array))|(np.fabs(values - array[np.maximum(idxs-1, 0)]) < np.fabs(values - array[np.minimum(idxs, len(array)-1)])))
idxs[prev_idx_is_less] -= 1
return array[idxs]
Benchmarks
> 100 times faster than using a for
loop with @Demitri's solution`
>>> %timeit ar=get_closest(np.linspace(1, 1000, 100), np.random.randint(0, 1050, (1000, 1000)))
139 ms ± 4.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit ar=[find_nearest(np.linspace(1, 1000, 100), value) for value in np.random.randint(0, 1050, 1000*1000)]
took 21.4 seconds
If you don't want to use numpy this will do it:
def find_nearest(array, value):
n = [abs(i-value) for i in array]
idx = n.index(min(n))
return array[idx]