I\'m starting with input data like this
df1 = pandas.DataFrame( {
\"Name\" : [\"Alice\", \"Bob\", \"Mallory\", \"Mallory\", \"Bob\" , \"Mallory\"] ,
g1
here is a DataFrame. It has a hierarchical index, though:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
Perhaps you want something like this?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
Or something like:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
I want to slightly change the answer given by Wes, because version 0.16.2 requires as_index=False
. If you don't set it, you get an empty dataframe.
Source:
Aggregation functions will not return the groups that you are aggregating over if they are named columns, when
as_index=True
, the default. The grouped columns will be the indices of the returned object.Passing
as_index=False
will return the groups that you are aggregating over, if they are named columns.Aggregating functions are ones that reduce the dimension of the returned objects, for example:
mean
,sum
,size
,count
,std
,var
,sem
,describe
,first
,last
,nth
,min
,max
. This is what happens when you do for exampleDataFrame.sum()
and get back aSeries
.nth can act as a reducer or a filter, see here.
import pandas as pd
df1 = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby(["Name", "City"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
EDIT:
In version 0.17.1
and later you can use subset
in count and reset_index with parameter name
in size:
print df1.groupby(["Name", "City"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby(["Name", "City"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby(["Name", "City"])[['Name','City']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby(["Name", "City"]).size().reset_index(name='count')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
The difference between count
and size
is that size
counts NaN values while count
does not.
Maybe I misunderstand the question but if you want to convert the groupby back to a dataframe you can use .to_frame(). I wanted to reset the index when I did this so I included that part as well.
example code unrelated to question
df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])
The key is to use the reset_index() method.
Use:
import pandas
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
g1 = df1.groupby( [ "Name", "City"] ).count().reset_index()
Now you have your new dataframe in g1:
I have aggregated with Qty wise data and store to dataframe
almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
)['Qty'].sum()}).reset_index()
These solutions only partially worked for me because I was doing multiple aggregations. Here is a sample output of my grouped by that I wanted to convert to a dataframe:
Because I wanted more than the count provided by reset_index(), I wrote a manual method for converting the image above into a dataframe. I understand this is not the most pythonic/pandas way of doing this as it is quite verbose and explicit, but it was all I needed. Basically, use the reset_index() method explained above to start a "scaffolding" dataframe, then loop through the group pairings in the grouped dataframe, retrieve the indices, perform your calculations against the ungrouped dataframe, and set the value in your new aggregated dataframe.
df_grouped = df[['Salary Basis', 'Job Title', 'Hourly Rate', 'Male Count', 'Female Count']]
df_grouped = df_grouped.groupby(['Salary Basis', 'Job Title'], as_index=False)
# Grouped gives us the indices we want for each grouping
# We cannot convert a groupedby object back to a dataframe, so we need to do it manually
# Create a new dataframe to work against
df_aggregated = df_grouped.size().to_frame('Total Count').reset_index()
df_aggregated['Male Count'] = 0
df_aggregated['Female Count'] = 0
df_aggregated['Job Rate'] = 0
def manualAggregations(indices_array):
temp_df = df.iloc[indices_array]
return {
'Male Count': temp_df['Male Count'].sum(),
'Female Count': temp_df['Female Count'].sum(),
'Job Rate': temp_df['Hourly Rate'].max()
}
for name, group in df_grouped:
ix = df_grouped.indices[name]
calcDict = manualAggregations(ix)
for key in calcDict:
#Salary Basis, Job Title
columns = list(name)
df_aggregated.loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1]), key] = calcDict[key]
If a dictionary isn't your thing, the calculations could be applied inline in the for loop:
df_aggregated['Male Count'].loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1])] = df['Male Count'].iloc[ix].sum()