I would like to fill df
\'s nan
with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({\'val\': [1,n
Althogh in case of multiple nan
's in a row it doesn't produce the exact output you specified, other users reaching this page may actually prefer the effect of the method interpolate()
:
df = df.interpolate()
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 6.3
10 7.7
11 9.0
Use ffill + bfill and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0