What is the formula for calculating the distance between 2 geocodes? I have seen some of the answers on this site but they basically say to rely on SQL Server 08 functions,
The pythagorean theorem as offered up by others here doesn't work so well.
The best, simple answer is to approximate the earth as a sphere (its actually a slightly flattened sphere, but this is very close). In Haskell, for instance you might use the following, but the math can be transcribed into pretty much anything:
distRadians (lat1,lon1) (lat2,lon2) =
radius_of_earth *
acos (cos lat1 * cos lon1 * cos lat2 * cos lon2 +
cos lat1 * sin lon1 * cos lat2 * sin lon2 +
sin lat1 * sin lat2) where
radius_of_earth = 6378 -- kilometers
distDegrees a b = distRadians (coord2rad a) (coord2rad b) where
deg2rad d = d * pi / 180
coord2rad (lat,lon) = (deg2rad lat, deg2rad lon)
distRadians
requires your angles to be given in radians.
distDegrees
is a helper function that can take lattitudes and longitudes in degrees.
See this series of posts for more information on the derivation of this formula.
If you really need the extra precision granted by assuming the earth is ellipsoidal, see this FAQ: http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
Take a look here for a SQL server 2000 version SQL Server Zipcode Latitude/Longitude proximity distance search
If
Then, consider that the earth is flat between the 2 points :
EarthRadius * latitude difference
EarthRadius * longitude difference * cos(latitude)
.
We multiply by cos(lat)
because the longitude degrees don't make the same km distance if the latitude changes. As P1 and P2 are close, cos(latP1) is close from cos(latP2)In JavaScript :
function ClosePointsDistance(latP1, lngP1, latP2, lngP2) {
var d2r = Math.PI / 180,
R=6371; // Earth Radius in km
latP1 *= d2r; lngP1 *= d2r; latP2 *= d2r; lngP2 *= d2r; // convert to radians
dlat = latP2 - latP1,
dlng = (lngP2 - lngP1) * Math.cos(latP1);
return R * Math.sqrt( dlat*dlat + dlng*dlng );
}
I tested it between Paris and Orleans (France) : the formula finds 110.9 km whereas the (exact) Haversine formula finds 111.0 km.
!!! Beware of situations around the meridian 0 (you may shift it) : if P1 is at Lng 359 and P2 is at Lng 0, the function will consider them abnormally far !!!