I have dynamically generated lines that animate and I want to detect when a lines hits another. I\'m trying to implement some basic linear algebra to obtain the equation of
I found a great solution by Paul Bourke. Here it is, implemented in JavaScript:
function line_intersect(x1, y1, x2, y2, x3, y3, x4, y4)
{
var ua, ub, denom = (y4 - y3)*(x2 - x1) - (x4 - x3)*(y2 - y1);
if (denom == 0) {
return null;
}
ua = ((x4 - x3)*(y1 - y3) - (y4 - y3)*(x1 - x3))/denom;
ub = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3))/denom;
return {
x: x1 + ua * (x2 - x1),
y: y1 + ua * (y2 - y1),
seg1: ua >= 0 && ua <= 1,
seg2: ub >= 0 && ub <= 1
};
}
For line segment-line segment intersections, use Paul Borke's solution:
// line intercept math by Paul Bourke http://paulbourke.net/geometry/pointlineplane/
// Determine the intersection point of two line segments
// Return FALSE if the lines don't intersect
function intersect(x1, y1, x2, y2, x3, y3, x4, y4) {
// Check if none of the lines are of length 0
if ((x1 === x2 && y1 === y2) || (x3 === x4 && y3 === y4)) {
return false
}
denominator = ((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1))
// Lines are parallel
if (denominator === 0) {
return false
}
let ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denominator
let ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denominator
// is the intersection along the segments
if (ua < 0 || ua > 1 || ub < 0 || ub > 1) {
return false
}
// Return a object with the x and y coordinates of the intersection
let x = x1 + ua * (x2 - x1)
let y = y1 + ua * (y2 - y1)
return {x, y}
}
For infinite line intersections, use Justin C. Round's algorithm:
function checkLineIntersection(line1StartX, line1StartY, line1EndX, line1EndY, line2StartX, line2StartY, line2EndX, line2EndY) {
// if the lines intersect, the result contains the x and y of the intersection (treating the lines as infinite) and booleans for whether line segment 1 or line segment 2 contain the point
var denominator, a, b, numerator1, numerator2, result = {
x: null,
y: null,
onLine1: false,
onLine2: false
};
denominator = ((line2EndY - line2StartY) * (line1EndX - line1StartX)) - ((line2EndX - line2StartX) * (line1EndY - line1StartY));
if (denominator == 0) {
return result;
}
a = line1StartY - line2StartY;
b = line1StartX - line2StartX;
numerator1 = ((line2EndX - line2StartX) * a) - ((line2EndY - line2StartY) * b);
numerator2 = ((line1EndX - line1StartX) * a) - ((line1EndY - line1StartY) * b);
a = numerator1 / denominator;
b = numerator2 / denominator;
// if we cast these lines infinitely in both directions, they intersect here:
result.x = line1StartX + (a * (line1EndX - line1StartX));
result.y = line1StartY + (a * (line1EndY - line1StartY));
// if line1 is a segment and line2 is infinite, they intersect if:
if (a > 0 && a < 1) {
result.onLine1 = true;
}
// if line2 is a segment and line1 is infinite, they intersect if:
if (b > 0 && b < 1) {
result.onLine2 = true;
}
// if line1 and line2 are segments, they intersect if both of the above are true
return result;
};
You don't need to alternate between adding/subtracting y-intersects when plugging 'found-x' back into one of the equations:
(function () {
window.linear = {
slope: function (x1, y1, x2, y2) {
if (x1 == x2) return false;
return (y1 - y2) / (x1 - x2);
},
yInt: function (x1, y1, x2, y2) {
if (x1 === x2) return y1 === 0 ? 0 : false;
if (y1 === y2) return y1;
return y1 - this.slope(x1, y1, x2, y2) * x1 ;
},
getXInt: function (x1, y1, x2, y2) {
var slope;
if (y1 === y2) return x1 == 0 ? 0 : false;
if (x1 === x2) return x1;
return (-1 * ((slope = this.slope(x1, y1, x2, y2)) * x1 - y1)) / slope;
},
getIntersection: function (x11, y11, x12, y12, x21, y21, x22, y22) {
var slope1, slope2, yint1, yint2, intx, inty;
if (x11 == x21 && y11 == y21) return [x11, y11];
if (x12 == x22 && y12 == y22) return [x12, y22];
slope1 = this.slope(x11, y11, x12, y12);
slope2 = this.slope(x21, y21, x22, y22);
if (slope1 === slope2) return false;
yint1 = this.yInt(x11, y11, x12, y12);
yint2 = this.yInt(x21, y21, x22, y22);
if (yint1 === yint2) return yint1 === false ? false : [0, yint1];
if (slope1 === false) return [y21, slope2 * y21 + yint2];
if (slope2 === false) return [y11, slope1 * y11 + yint1];
intx = (slope1 * x11 + yint1 - yint2)/ slope2;
return [intx, slope1 * intx + yint1];
}
}
}());
You may do as follows;
function lineIntersect(a,b){
a.m = (a[0].y-a[1].y)/(a[0].x-a[1].x); // slope of line 1
b.m = (b[0].y-b[1].y)/(b[0].x-b[1].x); // slope of line 2
return a.m - b.m < Number.EPSILON ? undefined
: { x: (a.m * a[0].x - b.m*b[0].x + b[0].y - a[0].y) / (a.m - b.m),
y: (a.m*b.m*(b[0].x-a[0].x) + b.m*a[0].y - a.m*b[0].y) / (b.m - a.m)};
}
var line1 = [{x:3, y:3},{x:17, y:8}],
line2 = [{x:7, y:10},{x:11, y:2}];
console.log(lineIntersect(line1, line2));
There is an npm module that does just that: line-intersect.
Install it using
npm install --save line-intersect
ES6 usage:
import { checkIntersection } from "line-intersect";
const result = lineIntersect.checkIntersection(
line1.start.x, line1.start.y, line1.end.x, line1.end.y,
line2.start.x, line2.start.y, line2.end.x, line2.end.y
);
result.type // any of "none", "parallel", "colinear", "intersecting"
result.point // only exists when result.type == 'intersecting'
If you're using typescript, here are the typings:
declare module "line-intersect" {
export function checkIntersection(
x1: number, y1: number,
x2: number, y2: number,
x3: number, y3: number,
x4: number, y4: number): {
type: string,
point: {x:number, y:number}
};
}
Put it in a file and reference if in tsconfig.json
's "files"
section.