I know it is possible to obtain the polynomial features as numbers by using: polynomial_features.transform(X)
. According to the manual, for a degree of two the
By the way, there is more appropriate function now: PolynomialFeatures.get_feature_names.
from sklearn.preprocessing import PolynomialFeatures
import pandas as pd
import numpy as np
data = pd.DataFrame.from_dict({
'x': np.random.randint(low=1, high=10, size=5),
'y': np.random.randint(low=-1, high=1, size=5),
})
p = PolynomialFeatures(degree=2).fit(data)
print p.get_feature_names(data.columns)
This will output as follows:
['1', 'x', 'y', 'x^2', 'x y', 'y^2']
N.B. For some reason you gotta fit your PolynomialFeatures object before you will be able to use get_feature_names().
If you are Pandas-lover (as I am), you can easily form DataFrame with all new features like this:
features = DataFrame(p.transform(data), columns=p.get_feature_names(data.columns))
print features
Result will look like this:
1 x y x^2 x y y^2
0 1.0 8.0 -1.0 64.0 -8.0 1.0
1 1.0 9.0 -1.0 81.0 -9.0 1.0
2 1.0 1.0 0.0 1.0 0.0 0.0
3 1.0 6.0 0.0 36.0 0.0 0.0
4 1.0 5.0 -1.0 25.0 -5.0 1.0
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
X = np.array([2,3])
poly = PolynomialFeatures(3)
Y = poly.fit_transform(X)
print Y
# prints [[ 1 2 3 4 6 9 8 12 18 27]]
print poly.powers_
This code will print:
[[0 0]
[1 0]
[0 1]
[2 0]
[1 1]
[0 2]
[3 0]
[2 1]
[1 2]
[0 3]]
So if the i'th cell is (x,y)
, that means that Y[i]=(a**x)*(b**y)
.
For instance, in the code example [2 1]
equals to (2**2)*(3**1)=12
.
For a dataframe like this
import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
data = pd.DataFrame({
'x': np.random.randint(low=1, high=10, size=5),
'y': np.random.randint(low=-1, high=1, size=5)})
Here's how I did it,
PolyFeats = PolynomialFeatures(degree=2)
dfPoly = pd.DataFrame(
data=PolyFeats.fit_transform(data),
columns=PolyFeats.get_feature_names(data.columns))
to get an output like this,
In [50]: dfPoly
Out[50]:
1 x y x^2 x y y^2
0 1.0 5.0 0.0 25.0 0.0 0.0
1 1.0 6.0 -1.0 36.0 -6.0 1.0
2 1.0 1.0 -1.0 1.0 -1.0 1.0
3 1.0 5.0 -1.0 25.0 -5.0 1.0
4 1.0 6.0 0.0 36.0 0.0 0.0