Assuming what you need is a simple byte swap, try something like
Unsigned 16 bit conversion:
swapped = (num>>8) | (num<<8);
Unsigned 32-bit conversion:
swapped = ((num>>24)&0xff) | // move byte 3 to byte 0
((num<<8)&0xff0000) | // move byte 1 to byte 2
((num>>8)&0xff00) | // move byte 2 to byte 1
((num<<24)&0xff000000); // byte 0 to byte 3
This swaps the byte orders from positions 1234 to 4321. If your input was 0xdeadbeef
, a 32-bit endian swap might have output of 0xefbeadde
.
The code above should be cleaned up with macros or at least constants instead of magic numbers, but hopefully it helps as is
EDIT: as another answer pointed out, there are platform, OS, and instruction set specific alternatives which can be MUCH faster than the above. In the Linux kernel there are macros (cpu_to_be32 for example) which handle endianness pretty nicely. But these alternatives are specific to their environments. In practice endianness is best dealt with using a blend of available approaches