How do I profile memory usage in Python?

前端 未结 8 560
无人及你
无人及你 2020-11-22 09:50

I\'ve recently become interested in algorithms and have begun exploring them by writing a naive implementation and then optimizing it in various ways.

I\'m already f

相关标签:
8条回答
  • 2020-11-22 10:11

    Python 3.4 includes a new module: tracemalloc. It provides detailed statistics about which code is allocating the most memory. Here's an example that displays the top three lines allocating memory.

    from collections import Counter
    import linecache
    import os
    import tracemalloc
    
    def display_top(snapshot, key_type='lineno', limit=3):
        snapshot = snapshot.filter_traces((
            tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
            tracemalloc.Filter(False, "<unknown>"),
        ))
        top_stats = snapshot.statistics(key_type)
    
        print("Top %s lines" % limit)
        for index, stat in enumerate(top_stats[:limit], 1):
            frame = stat.traceback[0]
            # replace "/path/to/module/file.py" with "module/file.py"
            filename = os.sep.join(frame.filename.split(os.sep)[-2:])
            print("#%s: %s:%s: %.1f KiB"
                  % (index, filename, frame.lineno, stat.size / 1024))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                print('    %s' % line)
    
        other = top_stats[limit:]
        if other:
            size = sum(stat.size for stat in other)
            print("%s other: %.1f KiB" % (len(other), size / 1024))
        total = sum(stat.size for stat in top_stats)
        print("Total allocated size: %.1f KiB" % (total / 1024))
    
    
    tracemalloc.start()
    
    counts = Counter()
    fname = '/usr/share/dict/american-english'
    with open(fname) as words:
        words = list(words)
        for word in words:
            prefix = word[:3]
            counts[prefix] += 1
    print('Top prefixes:', counts.most_common(3))
    
    snapshot = tracemalloc.take_snapshot()
    display_top(snapshot)
    

    And here are the results:

    Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
    Top 3 lines
    #1: scratches/memory_test.py:37: 6527.1 KiB
        words = list(words)
    #2: scratches/memory_test.py:39: 247.7 KiB
        prefix = word[:3]
    #3: scratches/memory_test.py:40: 193.0 KiB
        counts[prefix] += 1
    4 other: 4.3 KiB
    Total allocated size: 6972.1 KiB
    

    When is a memory leak not a leak?

    That example is great when the memory is still being held at the end of the calculation, but sometimes you have code that allocates a lot of memory and then releases it all. It's not technically a memory leak, but it's using more memory than you think it should. How can you track memory usage when it all gets released? If it's your code, you can probably add some debugging code to take snapshots while it's running. If not, you can start a background thread to monitor memory usage while the main thread runs.

    Here's the previous example where the code has all been moved into the count_prefixes() function. When that function returns, all the memory is released. I also added some sleep() calls to simulate a long-running calculation.

    from collections import Counter
    import linecache
    import os
    import tracemalloc
    from time import sleep
    
    
    def count_prefixes():
        sleep(2)  # Start up time.
        counts = Counter()
        fname = '/usr/share/dict/american-english'
        with open(fname) as words:
            words = list(words)
            for word in words:
                prefix = word[:3]
                counts[prefix] += 1
                sleep(0.0001)
        most_common = counts.most_common(3)
        sleep(3)  # Shut down time.
        return most_common
    
    
    def main():
        tracemalloc.start()
    
        most_common = count_prefixes()
        print('Top prefixes:', most_common)
    
        snapshot = tracemalloc.take_snapshot()
        display_top(snapshot)
    
    
    def display_top(snapshot, key_type='lineno', limit=3):
        snapshot = snapshot.filter_traces((
            tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
            tracemalloc.Filter(False, "<unknown>"),
        ))
        top_stats = snapshot.statistics(key_type)
    
        print("Top %s lines" % limit)
        for index, stat in enumerate(top_stats[:limit], 1):
            frame = stat.traceback[0]
            # replace "/path/to/module/file.py" with "module/file.py"
            filename = os.sep.join(frame.filename.split(os.sep)[-2:])
            print("#%s: %s:%s: %.1f KiB"
                  % (index, filename, frame.lineno, stat.size / 1024))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                print('    %s' % line)
    
        other = top_stats[limit:]
        if other:
            size = sum(stat.size for stat in other)
            print("%s other: %.1f KiB" % (len(other), size / 1024))
        total = sum(stat.size for stat in top_stats)
        print("Total allocated size: %.1f KiB" % (total / 1024))
    
    
    main()
    

    When I run that version, the memory usage has gone from 6MB down to 4KB, because the function released all its memory when it finished.

    Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
    Top 3 lines
    #1: collections/__init__.py:537: 0.7 KiB
        self.update(*args, **kwds)
    #2: collections/__init__.py:555: 0.6 KiB
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
    #3: python3.6/heapq.py:569: 0.5 KiB
        result = [(key(elem), i, elem) for i, elem in zip(range(0, -n, -1), it)]
    10 other: 2.2 KiB
    Total allocated size: 4.0 KiB
    

    Now here's a version inspired by another answer that starts a second thread to monitor memory usage.

    from collections import Counter
    import linecache
    import os
    import tracemalloc
    from datetime import datetime
    from queue import Queue, Empty
    from resource import getrusage, RUSAGE_SELF
    from threading import Thread
    from time import sleep
    
    def memory_monitor(command_queue: Queue, poll_interval=1):
        tracemalloc.start()
        old_max = 0
        snapshot = None
        while True:
            try:
                command_queue.get(timeout=poll_interval)
                if snapshot is not None:
                    print(datetime.now())
                    display_top(snapshot)
    
                return
            except Empty:
                max_rss = getrusage(RUSAGE_SELF).ru_maxrss
                if max_rss > old_max:
                    old_max = max_rss
                    snapshot = tracemalloc.take_snapshot()
                    print(datetime.now(), 'max RSS', max_rss)
    
    
    def count_prefixes():
        sleep(2)  # Start up time.
        counts = Counter()
        fname = '/usr/share/dict/american-english'
        with open(fname) as words:
            words = list(words)
            for word in words:
                prefix = word[:3]
                counts[prefix] += 1
                sleep(0.0001)
        most_common = counts.most_common(3)
        sleep(3)  # Shut down time.
        return most_common
    
    
    def main():
        queue = Queue()
        poll_interval = 0.1
        monitor_thread = Thread(target=memory_monitor, args=(queue, poll_interval))
        monitor_thread.start()
        try:
            most_common = count_prefixes()
            print('Top prefixes:', most_common)
        finally:
            queue.put('stop')
            monitor_thread.join()
    
    
    def display_top(snapshot, key_type='lineno', limit=3):
        snapshot = snapshot.filter_traces((
            tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
            tracemalloc.Filter(False, "<unknown>"),
        ))
        top_stats = snapshot.statistics(key_type)
    
        print("Top %s lines" % limit)
        for index, stat in enumerate(top_stats[:limit], 1):
            frame = stat.traceback[0]
            # replace "/path/to/module/file.py" with "module/file.py"
            filename = os.sep.join(frame.filename.split(os.sep)[-2:])
            print("#%s: %s:%s: %.1f KiB"
                  % (index, filename, frame.lineno, stat.size / 1024))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                print('    %s' % line)
    
        other = top_stats[limit:]
        if other:
            size = sum(stat.size for stat in other)
            print("%s other: %.1f KiB" % (len(other), size / 1024))
        total = sum(stat.size for stat in top_stats)
        print("Total allocated size: %.1f KiB" % (total / 1024))
    
    
    main()
    

    The resource module lets you check the current memory usage, and save the snapshot from the peak memory usage. The queue lets the main thread tell the memory monitor thread when to print its report and shut down. When it runs, it shows the memory being used by the list() call:

    2018-05-29 10:34:34.441334 max RSS 10188
    2018-05-29 10:34:36.475707 max RSS 23588
    2018-05-29 10:34:36.616524 max RSS 38104
    2018-05-29 10:34:36.772978 max RSS 45924
    2018-05-29 10:34:36.929688 max RSS 46824
    2018-05-29 10:34:37.087554 max RSS 46852
    Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
    2018-05-29 10:34:56.281262
    Top 3 lines
    #1: scratches/scratch.py:36: 6527.0 KiB
        words = list(words)
    #2: scratches/scratch.py:38: 16.4 KiB
        prefix = word[:3]
    #3: scratches/scratch.py:39: 10.1 KiB
        counts[prefix] += 1
    19 other: 10.8 KiB
    Total allocated size: 6564.3 KiB
    

    If you're on Linux, you may find /proc/self/statm more useful than the resource module.

    0 讨论(0)
  • 2020-11-22 10:11

    A simple example to calculate the memory usage of a block of codes / function using memory_profile, while returning result of the function:

    import memory_profiler as mp
    
    def fun(n):
        tmp = []
        for i in range(n):
            tmp.extend(list(range(i*i)))
        return "XXXXX"
    

    calculate memory usage before running the code then calculate max usage during the code:

    start_mem = mp.memory_usage(max_usage=True)
    res = mp.memory_usage(proc=(fun, [100]), max_usage=True, retval=True) 
    print('start mem', start_mem)
    print('max mem', res[0][0])
    print('used mem', res[0][0]-start_mem)
    print('fun output', res[1])
    

    calculate usage in sampling points while running function:

    res = mp.memory_usage((fun, [100]), interval=.001, retval=True)
    print('min mem', min(res[0]))
    print('max mem', max(res[0]))
    print('used mem', max(res[0])-min(res[0]))
    print('fun output', res[1])
    

    Credits: @skeept

    0 讨论(0)
  • 2020-11-22 10:15

    This one has been answered already here: Python memory profiler

    Basically you do something like that (cited from Guppy-PE):

    >>> from guppy import hpy; h=hpy()
    >>> h.heap()
    Partition of a set of 48477 objects. Total size = 3265516 bytes.
     Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
         0  25773  53  1612820  49   1612820  49 str
         1  11699  24   483960  15   2096780  64 tuple
         2    174   0   241584   7   2338364  72 dict of module
         3   3478   7   222592   7   2560956  78 types.CodeType
         4   3296   7   184576   6   2745532  84 function
         5    401   1   175112   5   2920644  89 dict of class
         6    108   0    81888   3   3002532  92 dict (no owner)
         7    114   0    79632   2   3082164  94 dict of type
         8    117   0    51336   2   3133500  96 type
         9    667   1    24012   1   3157512  97 __builtin__.wrapper_descriptor
    <76 more rows. Type e.g. '_.more' to view.>
    >>> h.iso(1,[],{})
    Partition of a set of 3 objects. Total size = 176 bytes.
     Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
         0      1  33      136  77       136  77 dict (no owner)
         1      1  33       28  16       164  93 list
         2      1  33       12   7       176 100 int
    >>> x=[]
    >>> h.iso(x).sp
     0: h.Root.i0_modules['__main__'].__dict__['x']
    >>> 
    
    0 讨论(0)
  • 2020-11-22 10:15

    maybe it help:
    <see additional>

    pip install gprof2dot
    sudo apt-get install graphviz
    
    gprof2dot -f pstats profile_for_func1_001 | dot -Tpng -o profile.png
    
    def profileit(name):
        """
        @profileit("profile_for_func1_001")
        """
        def inner(func):
            def wrapper(*args, **kwargs):
                prof = cProfile.Profile()
                retval = prof.runcall(func, *args, **kwargs)
                # Note use of name from outer scope
                prof.dump_stats(name)
                return retval
            return wrapper
        return inner
    
    @profileit("profile_for_func1_001")
    def func1(...)
    
    0 讨论(0)
  • 2020-11-22 10:17

    Disclosure:

    • Applicable on Linux only
    • Reports memory used by the current process as a whole, not individual functions within

    But nice because of its simplicity:

    import resource
    def using(point=""):
        usage=resource.getrusage(resource.RUSAGE_SELF)
        return '''%s: usertime=%s systime=%s mem=%s mb
               '''%(point,usage[0],usage[1],
                    usage[2]/1024.0 )
    

    Just insert using("Label") where you want to see what's going on. For example

    print(using("before"))
    wrk = ["wasting mem"] * 1000000
    print(using("after"))
    
    >>> before: usertime=2.117053 systime=1.703466 mem=53.97265625 mb
    >>> after: usertime=2.12023 systime=1.70708 mem=60.8828125 mb
    
    0 讨论(0)
  • 2020-11-22 10:17

    Below is a simple function decorator which allows to track how much memory the process consumed before the function call, after the function call, and what is the difference:

    import time
    import os
    import psutil
     
     
    def elapsed_since(start):
        return time.strftime("%H:%M:%S", time.gmtime(time.time() - start))
     
     
    def get_process_memory():
        process = psutil.Process(os.getpid())
        mem_info = process.memory_info()
        return mem_info.rss
     
     
    def profile(func):
        def wrapper(*args, **kwargs):
            mem_before = get_process_memory()
            start = time.time()
            result = func(*args, **kwargs)
            elapsed_time = elapsed_since(start)
            mem_after = get_process_memory()
            print("{}: memory before: {:,}, after: {:,}, consumed: {:,}; exec time: {}".format(
                func.__name__,
                mem_before, mem_after, mem_after - mem_before,
                elapsed_time))
            return result
        return wrapper
    

    Here is my blog which describes all the details. (archived link)

    0 讨论(0)
提交回复
热议问题