Imagine two positive integers A and B. I want to combine these two into a single integer C.
There can be no other integers D and E which combine to C. So combining
Say you have a 32 bit integer, why not just move A into the first 16 bit half and B into the other?
def vec_pack(vec):
return vec[0] + vec[1] * 65536;
def vec_unpack(number):
return [number % 65536, number // 65536];
Other than this being as space efficient as possible and cheap to compute, a really cool side effect is that you can do vector math on the packed number.
a = vec_pack([2,4])
b = vec_pack([1,2])
print(vec_unpack(a+b)) # [3, 6] Vector addition
print(vec_unpack(a-b)) # [1, 2] Vector subtraction
print(vec_unpack(a*2)) # [4, 8] Scalar multiplication
let us have two number B and C , encoding them into single number A
A = B + C * N
where
B=A % N = B
C=A / N = C
If A and B can be expressed with 2 bytes, you can combine them on 4 bytes. Put A on the most significant half and B on the least significant half.
In C language this gives (assuming sizeof(short)=2 and sizeof(int)=4):
int combine(short A, short B)
{
return A<<16 | B;
}
short getA(int C)
{
return C>>16;
}
short getB(int C)
{
return C & 0xFFFF;
}
It isn't that tough to construct a mapping:
1 2 3 4 5 use this mapping if (a,b) != (b,a) 1 0 1 3 6 10 2 2 4 7 11 16 3 5 8 12 17 23 4 9 13 18 24 31 5 14 19 25 32 40 1 2 3 4 5 use this mapping if (a,b) == (b,a) (mirror) 1 0 1 2 4 6 2 1 3 5 7 10 3 2 5 8 11 14 4 4 8 11 15 19 5 6 10 14 19 24 0 1 -1 2 -2 use this if you need negative/positive 0 0 1 2 4 6 1 1 3 5 7 10 -1 2 5 8 11 14 2 4 8 11 15 19 -2 6 10 14 19 24
Figuring out how to get the value for an arbitrary a,b is a little more difficult.
Check this: http://en.wikipedia.org/wiki/Pigeonhole_principle. If A, B and C are of same type, it cannot be done. If A and B are 16-bit integers, and C is 32-bit, then you can simply use shifting.
The very nature of hashing algorithms is that they cannot provide a unique hash for each different input.
Here is an extension of @DoctorJ 's code to unbounded integers based on the method given by @nawfal. It can encode and decode. It works with normal arrays and numpy arrays.
#!/usr/bin/env python
from numbers import Integral
def tuple_to_int(tup):
""":Return: the unique non-negative integer encoding of a tuple of non-negative integers."""
if len(tup) == 0: # normally do if not tup, but doesn't work with np
raise ValueError('Cannot encode empty tuple')
if len(tup) == 1:
x = tup[0]
if not isinstance(x, Integral):
raise ValueError('Can only encode integers')
return x
elif len(tup) == 2:
# print("len=2")
x, y = tuple_to_int(tup[0:1]), tuple_to_int(tup[1:2]) # Just to validate x and y
X = 2 * x if x >= 0 else -2 * x - 1 # map x to positive integers
Y = 2 * y if y >= 0 else -2 * y - 1 # map y to positive integers
Z = (X * X + X + Y) if X >= Y else (X + Y * Y) # encode
# Map evens onto positives
if (x >= 0 and y >= 0):
return Z // 2
elif (x < 0 and y >= 0 and X >= Y):
return Z // 2
elif (x < 0 and y < 0 and X < Y):
return Z // 2
# Map odds onto negative
else:
return (-Z - 1) // 2
else:
return tuple_to_int((tuple_to_int(tup[:2]),) + tuple(tup[2:])) # ***speed up tuple(tup[2:])?***
def int_to_tuple(num, size=2):
""":Return: the unique tuple of length `size` that encodes to `num`."""
if not isinstance(num, Integral):
raise ValueError('Can only encode integers (got {})'.format(num))
if not isinstance(size, Integral) or size < 1:
raise ValueError('Tuple is the wrong size ({})'.format(size))
if size == 1:
return (num,)
elif size == 2:
# Mapping onto positive integers
Z = -2 * num - 1 if num < 0 else 2 * num
# Reversing Pairing
s = isqrt(Z)
if Z - s * s < s:
X, Y = Z - s * s, s
else:
X, Y = s, Z - s * s - s
# Undoing mappint to positive integers
x = (X + 1) // -2 if X % 2 else X // 2 # True if X not divisible by 2
y = (Y + 1) // -2 if Y % 2 else Y // 2 # True if Y not divisible by 2
return x, y
else:
x, y = int_to_tuple(num, 2)
return int_to_tuple(x, size - 1) + (y,)
def isqrt(n):
"""":Return: the largest integer x for which x * x does not exceed n."""
# Newton's method, via http://stackoverflow.com/a/15391420
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x