My application runs as a background process on Linux. It is currently started at the command line in a Terminal window.
Recently a user was executing the application
The user has the ability to kill his own programs, using kill or Control+C, but I get the impression that's not what happened, and that the user complained to you.
root has the ability to kill programs of course, but if someone has root on your machine and is killing stuff you have bigger problems.
If you are not the sysadmin, the sysadmin may have set up quotas on CPU, RAM, ort disk usage and auto-kills processes that exceed them.
Other than those guesses, I'm not sure without more info about the program.
This is the Linux out of memory manager (OOM). Your process was selected due to 'badness' - a combination of recentness, resident size (memory in use, rather than just allocated) and other factors.
sudo journalctl -xb
You'll see a message like:
Jul 20 11:05:00 someapp kernel: Mem-Info:
Jul 20 11:05:00 someapp kernel: Node 0 DMA per-cpu:
Jul 20 11:05:00 someapp kernel: CPU 0: hi: 0, btch: 1 usd: 0
Jul 20 11:05:00 someapp kernel: Node 0 DMA32 per-cpu:
Jul 20 11:05:00 someapp kernel: CPU 0: hi: 186, btch: 31 usd: 30
Jul 20 11:05:00 someapp kernel: active_anon:206043 inactive_anon:6347 isolated_anon:0
active_file:722 inactive_file:4126 isolated_file:0
unevictable:0 dirty:5 writeback:0 unstable:0
free:12202 slab_reclaimable:3849 slab_unreclaimable:14574
mapped:792 shmem:12802 pagetables:1651 bounce:0
free_cma:0
Jul 20 11:05:00 someapp kernel: Node 0 DMA free:4576kB min:708kB low:884kB high:1060kB active_anon:10012kB inactive_anon:488kB active_file:4kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present
Jul 20 11:05:00 someapp kernel: lowmem_reserve[]: 0 968 968 968
Jul 20 11:05:00 someapp kernel: Node 0 DMA32 free:44232kB min:44344kB low:55428kB high:66516kB active_anon:814160kB inactive_anon:24900kB active_file:2884kB inactive_file:16500kB unevictable:0kB isolated(anon):0kB isolated
Jul 20 11:05:00 someapp kernel: lowmem_reserve[]: 0 0 0 0
Jul 20 11:05:00 someapp kernel: Node 0 DMA: 17*4kB (UEM) 22*8kB (UEM) 15*16kB (UEM) 12*32kB (UEM) 8*64kB (E) 9*128kB (UEM) 2*256kB (UE) 3*512kB (UM) 0*1024kB 0*2048kB 0*4096kB = 4580kB
Jul 20 11:05:00 someapp kernel: Node 0 DMA32: 216*4kB (UE) 601*8kB (UE) 448*16kB (UE) 311*32kB (UEM) 135*64kB (UEM) 74*128kB (UEM) 5*256kB (EM) 0*512kB 0*1024kB 1*2048kB (R) 0*4096kB = 44232kB
Jul 20 11:05:00 someapp kernel: Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
Jul 20 11:05:00 someapp kernel: 17656 total pagecache pages
Jul 20 11:05:00 someapp kernel: 0 pages in swap cache
Jul 20 11:05:00 someapp kernel: Swap cache stats: add 0, delete 0, find 0/0
Jul 20 11:05:00 someapp kernel: Free swap = 0kB
Jul 20 11:05:00 someapp kernel: Total swap = 0kB
Jul 20 11:05:00 someapp kernel: 262141 pages RAM
Jul 20 11:05:00 someapp kernel: 7645 pages reserved
Jul 20 11:05:00 someapp kernel: 264073 pages shared
Jul 20 11:05:00 someapp kernel: 240240 pages non-shared
Jul 20 11:05:00 someapp kernel: [ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name
Jul 20 11:05:00 someapp kernel: [ 241] 0 241 13581 1610 26 0 0 systemd-journal
Jul 20 11:05:00 someapp kernel: [ 246] 0 246 10494 133 22 0 -1000 systemd-udevd
Jul 20 11:05:00 someapp kernel: [ 264] 0 264 29174 121 26 0 -1000 auditd
Jul 20 11:05:00 someapp kernel: [ 342] 0 342 94449 466 67 0 0 NetworkManager
Jul 20 11:05:00 someapp kernel: [ 346] 0 346 137495 3125 88 0 0 tuned
Jul 20 11:05:00 someapp kernel: [ 348] 0 348 79595 726 60 0 0 rsyslogd
Jul 20 11:05:00 someapp kernel: [ 353] 70 353 6986 72 19 0 0 avahi-daemon
Jul 20 11:05:00 someapp kernel: [ 362] 70 362 6986 58 18 0 0 avahi-daemon
Jul 20 11:05:00 someapp kernel: [ 378] 0 378 1621 25 8 0 0 iprinit
Jul 20 11:05:00 someapp kernel: [ 380] 0 380 1621 26 9 0 0 iprupdate
Jul 20 11:05:00 someapp kernel: [ 384] 81 384 6676 142 18 0 -900 dbus-daemon
Jul 20 11:05:00 someapp kernel: [ 385] 0 385 8671 83 21 0 0 systemd-logind
Jul 20 11:05:00 someapp kernel: [ 386] 0 386 31573 153 15 0 0 crond
Jul 20 11:05:00 someapp kernel: [ 391] 999 391 128531 2440 48 0 0 polkitd
Jul 20 11:05:00 someapp kernel: [ 400] 0 400 9781 23 8 0 0 iprdump
Jul 20 11:05:00 someapp kernel: [ 419] 0 419 27501 32 10 0 0 agetty
Jul 20 11:05:00 someapp kernel: [ 855] 0 855 22883 258 43 0 0 master
Jul 20 11:05:00 someapp kernel: [ 862] 89 862 22926 254 44 0 0 qmgr
Jul 20 11:05:00 someapp kernel: [23631] 0 23631 20698 211 43 0 -1000 sshd
Jul 20 11:05:00 someapp kernel: [12884] 0 12884 81885 3754 80 0 0 firewalld
Jul 20 11:05:00 someapp kernel: [18130] 0 18130 33359 291 65 0 0 sshd
Jul 20 11:05:00 someapp kernel: [18132] 1000 18132 33791 748 64 0 0 sshd
Jul 20 11:05:00 someapp kernel: [18133] 1000 18133 28867 122 13 0 0 bash
Jul 20 11:05:00 someapp kernel: [18428] 99 18428 208627 42909 151 0 0 node
Jul 20 11:05:00 someapp kernel: [18486] 89 18486 22909 250 46 0 0 pickup
Jul 20 11:05:00 someapp kernel: [18515] 1000 18515 352905 141851 470 0 0 npm
Jul 20 11:05:00 someapp kernel: [18520] 0 18520 33359 291 66 0 0 sshd
Jul 20 11:05:00 someapp kernel: [18522] 1000 18522 33359 294 64 0 0 sshd
Jul 20 11:05:00 someapp kernel: [18523] 1000 18523 28866 115 12 0 0 bash
Jul 20 11:05:00 someapp kernel: Out of memory: Kill process 18515 (npm) score 559 or sacrifice child
Jul 20 11:05:00 someapp kernel: Killed process 18515 (npm) total-vm:1411620kB, anon-rss:567404kB, file-rss:0kB
As dwc and Adam Jaskiewicz have stated, the culprit is likely the OOM Killer. However, the next question that follows is: How do I prevent this?
There are several ways:
I found (2) to be especially easy to implement, thanks to this article.
This looks like a good article on the subject: Taming the OOM killer.
The gist is that Linux overcommits memory. When a process asks for more space, Linux will give it that space, even if it is claimed by another process, under the assumption that nobody actually uses all of the memory they ask for. The process will get exclusive use of the memory it has allocated when it actually uses it, not when it asks for it. This makes allocation quick, and might allow you to "cheat" and allocate more memory than you really have. However, once processes start using this memory, Linux might realize that it has been too generous in allocating memory it doesn't have, and will have to kill off a process to free some up. The process to be killed is based on a score taking into account runtime (long-running processes are safer), memory usage (greedy processes are less safe), and a few other factors, including a value you can adjust to make a process less likely to be killed. It's all described in the article in a lot more detail.
Edit: And here is another article that explains pretty well how a process is chosen (annotated with some kernel code examples). The great thing about this is that it includes some commentary on the reasoning behind the various badness()
rules.
If the user or sysadmin did not kill the program the kernel may have. The kernel would only kill a process under exceptional circumstances such as extreme resource starvation (think mem+swap exhaustion).
Try:
dmesg -T| grep -E -i -B100 'killed process'
Where -B100
signifies the number of lines before the kill happened.
Omit -T on Mac OS.