I have following dataframe and vector:
ddf = data.frame(a=rep(1,10), b=rep(2,10))
xx = c(\"c\", \"d\", \"e\", \"f\")
How can I new empty c
This seems to succeed:
> cbind(ddf, setNames( lapply(xx, function(x) x=NA), xx) )
a b c d e f
1 1 2 NA NA NA NA
2 1 2 NA NA NA NA
3 1 2 NA NA NA NA
4 1 2 NA NA NA NA
5 1 2 NA NA NA NA
6 1 2 NA NA NA NA
7 1 2 NA NA NA NA
8 1 2 NA NA NA NA
9 1 2 NA NA NA NA
10 1 2 NA NA NA NA
This will get you there:
ddf[xx] <- NA
# a b c d e f
#1 1 2 NA NA NA NA
#2 1 2 NA NA NA NA
#3 1 2 NA NA NA NA
#...
You can't directly use something like ddf$xx
because this will try to assign to a column called xx
rather than interpreting xx
. You need to use [
and [<-
functions, using the square brackets when you are dealing with a character string/vector - like ddf["columnname"]
or ddf[c("col1","col2")]
, or a stored vector like your ddf[xx]
.
The reason why it selects columns is because data.frames
are lists essentially:
is.list(ddf)
#[1] TRUE
as.list(ddf)
#$a
# [1] 1 1 1 1 1 1 1 1 1 1
#
#$b
# [1] 2 2 2 2 2 2 2 2 2 2
...with each column corresponding to a list entry. So if you don't use a comma to specify a row, like ddf["name",]
or a column like ddf[,"name"]
, you get the column by default.
In the case that you are working with a 0-row dataset, you can not use a value like NA
as the replacement. Instead, replace with list(character(0))
where character(0)
can be substituted for numeric(0)
, integer(0)
, logical(0)
etc, depending on the class you want for your new columns.
ddf <- data.frame(a=character())
xx <- c("c", "d", "e", "f")
ddf[xx] <- list(character(0))
ddf
#[1] a c d e f
#<0 rows> (or 0-length row.names)