How to get most informative features for scikit-learn classifier for different class?

后端 未结 3 1450
伪装坚强ぢ
伪装坚强ぢ 2020-12-05 12:50

NLTK package provides a method show_most_informative_features() to find the most important features for both class, with output like:

   contai         


        
相关标签:
3条回答
  • 2020-12-05 12:54

    You can get the same with two classes on the left and right side:

               precision    recall  f1-score   support
    
     Irrelevant       0.77      0.98      0.86       129
       Relevant       0.78      0.15      0.25        46
    
    avg / total       0.77      0.77      0.70       175
    
        -1.3914 davis                   1.4809  austin
        -1.1023 suicide                 1.0695  march
        -1.0609 arrested                1.0379  call
        -1.0145 miller                  1.0152  tsa
        -0.8902 packers                 0.9848  passengers
        -0.8370 train                   0.9547  pensacola
        -0.7557 trevor                  0.7432  bag
        -0.7457 near                    0.7056  conditt
        -0.7359 military                0.7002  midamerica
        -0.7302 berlin                  0.6987  mark
        -0.6880 april                   0.6799  grenade
        -0.6581 plane                   0.6357  suspicious
        -0.6351 disposal                0.6348  death
        -0.5804 wwii                    0.6053  flight
        -0.5723 terminal                0.5745  marabi
    
    
    def Show_most_informative_features(vectorizer, clf, n=20):
        feature_names = vectorizer.get_feature_names()
        coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
        top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
        for (coef_1, fn_1), (coef_2, fn_2) in top:
          print ("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2))
    
    0 讨论(0)
  • 2020-12-05 12:56

    In the case of binary classification, it seems like the coefficient array has been flatten.

    Let's try to relabel our data with only two labels:

    import codecs, re, time
    from itertools import chain
    
    import numpy as np
    
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    
    trainfile = 'train.txt'
    
    # Vectorizing data.
    train = []
    word_vectorizer = CountVectorizer(analyzer='word')
    trainset = word_vectorizer.fit_transform(codecs.open(trainfile,'r','utf8'))
    tags = ['bs','pt','bs','pt']
    
    # Training NB
    mnb = MultinomialNB()
    mnb.fit(trainset, tags)
    
    print mnb.classes_
    print mnb.coef_[0]
    print mnb.coef_[1]
    

    [out]:

    ['bs' 'pt']
    [-5.55682806 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -5.55682806
     -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088 -4.86368088
     -4.1705337  -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -5.55682806 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.45821577 -4.86368088
     -4.86368088 -4.45821577 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -4.1705337  -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -4.45821577 -4.86368088 -4.86368088]
    Traceback (most recent call last):
      File "test.py", line 24, in <module>
        print mnb.coef_[1]
    IndexError: index 1 is out of bounds for axis 0 with size 1
    

    So let's do some diagnostics:

    print mnb.feature_count_
    print mnb.coef_[0]
    

    [out]:

    [[ 1.  0.  0.  1.  1.  1.  0.  0.  1.  1.  0.  0.  0.  1.  0.  1.  0.  1.
       1.  1.  2.  2.  0.  0.  0.  1.  1.  0.  1.  0.  0.  0.  0.  0.  2.  1.
       1.  1.  1.  0.  0.  0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  1.  0.  0.
       0.  1.  1.  1.  1.  1.  1.  1.  1.  0.  0.  0.  0.  1.  1.  0.  1.  0.
       1.  2.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  1.  1.  0.  1.  1.
       0.  1.  0.  0.  0.  1.  1.  1.  0.  0.  1.  0.  1.  0.  1.  0.  1.  1.
       1.  0.  0.  1.  0.  0.  0.  4.  0.  0.  1.  0.  0.  0.  0.  0.  1.  0.
       0.  0.  1.  0.  0.  0.  0.  0.  0.  1.  0.  0.  1.  1.  0.  0.  0.  0.
       0.  0.  1.  0.  0.  1.  0.  0.  0.  0.]
     [ 0.  1.  1.  0.  0.  0.  1.  1.  0.  0.  1.  1.  3.  0.  1.  0.  1.  0.
       0.  0.  1.  2.  1.  1.  1.  1.  0.  1.  0.  1.  1.  1.  1.  1.  0.  0.
       0.  0.  0.  2.  1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  1.  0.  1.  1.
       1.  0.  0.  0.  0.  0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  1.  0.  1.
       0.  0.  1.  1.  2.  1.  1.  2.  1.  1.  1.  0.  1.  0.  0.  1.  0.  0.
       1.  0.  1.  1.  1.  0.  0.  0.  1.  1.  0.  1.  0.  1.  0.  1.  0.  0.
       0.  1.  1.  0.  1.  1.  1.  3.  1.  1.  0.  1.  1.  1.  1.  1.  0.  1.
       1.  1.  0.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.  0.  1.  1.  1.  1.
       1.  1.  0.  1.  1.  0.  1.  2.  1.  1.]]
    [-5.55682806 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -5.55682806
     -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088 -4.86368088
     -4.1705337  -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -5.55682806 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.45821577 -4.86368088
     -4.86368088 -4.45821577 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -4.1705337  -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -4.45821577 -4.86368088 -4.86368088]
    

    Seems like the features are counted and then when vectorized it was flattened to save memory, so let's try:

    index = 0
    coef_features_c1_c2 = []
    
    for feat, c1, c2 in zip(word_vectorizer.get_feature_names(), mnb.feature_count_[0], mnb.feature_count_[1]):
        coef_features_c1_c2.append(tuple([mnb.coef_[0][index], feat, c1, c2]))
        index+=1
    
    for i in sorted(coef_features_c1_c2):
        print i
    

    [out]:

    (-5.5568280616995374, u'acuerdo', 1.0, 0.0)
    (-5.5568280616995374, u'al', 1.0, 0.0)
    (-5.5568280616995374, u'alex', 1.0, 0.0)
    (-5.5568280616995374, u'algo', 1.0, 0.0)
    (-5.5568280616995374, u'andaba', 1.0, 0.0)
    (-5.5568280616995374, u'andrea', 1.0, 0.0)
    (-5.5568280616995374, u'bien', 1.0, 0.0)
    (-5.5568280616995374, u'buscando', 1.0, 0.0)
    (-5.5568280616995374, u'como', 1.0, 0.0)
    (-5.5568280616995374, u'con', 1.0, 0.0)
    (-5.5568280616995374, u'conseguido', 1.0, 0.0)
    (-5.5568280616995374, u'distancia', 1.0, 0.0)
    (-5.5568280616995374, u'doprinese', 1.0, 0.0)
    (-5.5568280616995374, u'es', 2.0, 0.0)
    (-5.5568280616995374, u'est\xe1', 1.0, 0.0)
    (-5.5568280616995374, u'eulex', 1.0, 0.0)
    (-5.5568280616995374, u'excusa', 1.0, 0.0)
    (-5.5568280616995374, u'fama', 1.0, 0.0)
    (-5.5568280616995374, u'guasch', 1.0, 0.0)
    (-5.5568280616995374, u'ha', 1.0, 0.0)
    (-5.5568280616995374, u'incident', 1.0, 0.0)
    (-5.5568280616995374, u'ispit', 1.0, 0.0)
    (-5.5568280616995374, u'istragu', 1.0, 0.0)
    (-5.5568280616995374, u'izbijanju', 1.0, 0.0)
    (-5.5568280616995374, u'ja\u010danju', 1.0, 0.0)
    (-5.5568280616995374, u'je', 1.0, 0.0)
    (-5.5568280616995374, u'jedan', 1.0, 0.0)
    (-5.5568280616995374, u'jo\u0161', 1.0, 0.0)
    (-5.5568280616995374, u'kapaciteta', 1.0, 0.0)
    (-5.5568280616995374, u'kosova', 1.0, 0.0)
    (-5.5568280616995374, u'la', 1.0, 0.0)
    (-5.5568280616995374, u'lequio', 1.0, 0.0)
    (-5.5568280616995374, u'llevar', 1.0, 0.0)
    (-5.5568280616995374, u'lo', 2.0, 0.0)
    (-5.5568280616995374, u'misije', 1.0, 0.0)
    (-5.5568280616995374, u'muy', 1.0, 0.0)
    (-5.5568280616995374, u'm\xe1s', 1.0, 0.0)
    (-5.5568280616995374, u'na', 1.0, 0.0)
    (-5.5568280616995374, u'nada', 1.0, 0.0)
    (-5.5568280616995374, u'nasilja', 1.0, 0.0)
    (-5.5568280616995374, u'no', 1.0, 0.0)
    (-5.5568280616995374, u'obaviti', 1.0, 0.0)
    (-5.5568280616995374, u'obe\u0107ao', 1.0, 0.0)
    (-5.5568280616995374, u'parecer', 1.0, 0.0)
    (-5.5568280616995374, u'pone', 1.0, 0.0)
    (-5.5568280616995374, u'por', 1.0, 0.0)
    (-5.5568280616995374, u'po\u0161to', 1.0, 0.0)
    (-5.5568280616995374, u'prava', 1.0, 0.0)
    (-5.5568280616995374, u'predstavlja', 1.0, 0.0)
    (-5.5568280616995374, u'pro\u0161losedmi\u010dnom', 1.0, 0.0)
    (-5.5568280616995374, u'relaci\xf3n', 1.0, 0.0)
    (-5.5568280616995374, u'sjeveru', 1.0, 0.0)
    (-5.5568280616995374, u'taj', 1.0, 0.0)
    (-5.5568280616995374, u'una', 1.0, 0.0)
    (-5.5568280616995374, u'visto', 1.0, 0.0)
    (-5.5568280616995374, u'vladavine', 1.0, 0.0)
    (-5.5568280616995374, u'ya', 1.0, 0.0)
    (-5.5568280616995374, u'\u0107e', 1.0, 0.0)
    (-4.863680881139592, u'aj', 0.0, 1.0)
    (-4.863680881139592, u'ajudou', 0.0, 1.0)
    (-4.863680881139592, u'alpsk\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'alpy', 0.0, 1.0)
    (-4.863680881139592, u'ao', 0.0, 1.0)
    (-4.863680881139592, u'apresenta', 0.0, 1.0)
    (-4.863680881139592, u'bl\xedzko', 0.0, 1.0)
    (-4.863680881139592, u'come\xe7o', 0.0, 1.0)
    (-4.863680881139592, u'da', 2.0, 1.0)
    (-4.863680881139592, u'decepcionantes', 0.0, 1.0)
    (-4.863680881139592, u'deti', 0.0, 1.0)
    (-4.863680881139592, u'dificuldades', 0.0, 1.0)
    (-4.863680881139592, u'dif\xedcil', 1.0, 1.0)
    (-4.863680881139592, u'do', 0.0, 1.0)
    (-4.863680881139592, u'druh', 0.0, 1.0)
    (-4.863680881139592, u'd\xe1', 0.0, 1.0)
    (-4.863680881139592, u'ela', 0.0, 1.0)
    (-4.863680881139592, u'encontrar', 0.0, 1.0)
    (-4.863680881139592, u'enfrentar', 0.0, 1.0)
    (-4.863680881139592, u'for\xe7as', 0.0, 1.0)
    (-4.863680881139592, u'furiosa', 0.0, 1.0)
    (-4.863680881139592, u'golf', 0.0, 1.0)
    (-4.863680881139592, u'golfistami', 0.0, 1.0)
    (-4.863680881139592, u'golfov\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'hotelmi', 0.0, 1.0)
    (-4.863680881139592, u'hra\u0165', 0.0, 1.0)
    (-4.863680881139592, u'ide', 0.0, 1.0)
    (-4.863680881139592, u'ihr\xedsk', 0.0, 1.0)
    (-4.863680881139592, u'intranspon\xedveis', 0.0, 1.0)
    (-4.863680881139592, u'in\xedcio', 0.0, 1.0)
    (-4.863680881139592, u'in\xfd', 0.0, 1.0)
    (-4.863680881139592, u'kde', 0.0, 1.0)
    (-4.863680881139592, u'kombin\xe1cie', 0.0, 1.0)
    (-4.863680881139592, u'komplex', 0.0, 1.0)
    (-4.863680881139592, u'kon\u010diarmi', 0.0, 1.0)
    (-4.863680881139592, u'lado', 0.0, 1.0)
    (-4.863680881139592, u'lete', 0.0, 1.0)
    (-4.863680881139592, u'longo', 0.0, 1.0)
    (-4.863680881139592, u'ly\u017eova\u0165', 0.0, 1.0)
    (-4.863680881139592, u'man\u017eelky', 0.0, 1.0)
    (-4.863680881139592, u'mas', 0.0, 1.0)
    (-4.863680881139592, u'mesmo', 0.0, 1.0)
    (-4.863680881139592, u'meu', 0.0, 1.0)
    (-4.863680881139592, u'minha', 0.0, 1.0)
    (-4.863680881139592, u'mo\u017enos\u0165ami', 0.0, 1.0)
    (-4.863680881139592, u'm\xe3e', 0.0, 1.0)
    (-4.863680881139592, u'nad\u0161en\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'negativas', 0.0, 1.0)
    (-4.863680881139592, u'nie', 0.0, 1.0)
    (-4.863680881139592, u'nieko\u013ek\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'para', 0.0, 1.0)
    (-4.863680881139592, u'parecem', 0.0, 1.0)
    (-4.863680881139592, u'pod', 0.0, 1.0)
    (-4.863680881139592, u'pon\xfakaj\xfa', 0.0, 1.0)
    (-4.863680881139592, u'potrebuj\xfa', 0.0, 1.0)
    (-4.863680881139592, u'pri', 0.0, 1.0)
    (-4.863680881139592, u'prova\xe7\xf5es', 0.0, 1.0)
    (-4.863680881139592, u'punham', 0.0, 1.0)
    (-4.863680881139592, u'qual', 0.0, 1.0)
    (-4.863680881139592, u'qualquer', 0.0, 1.0)
    (-4.863680881139592, u'quem', 0.0, 1.0)
    (-4.863680881139592, u'rak\xfaske', 0.0, 1.0)
    (-4.863680881139592, u'rezortov', 0.0, 1.0)
    (-4.863680881139592, u'sa', 0.0, 1.0)
    (-4.863680881139592, u'sebe', 0.0, 1.0)
    (-4.863680881139592, u'sempre', 0.0, 1.0)
    (-4.863680881139592, u'situa\xe7\xf5es', 0.0, 1.0)
    (-4.863680881139592, u'spojen\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'suplantar', 0.0, 1.0)
    (-4.863680881139592, u's\xfa', 0.0, 1.0)
    (-4.863680881139592, u'tak', 0.0, 1.0)
    (-4.863680881139592, u'talianske', 0.0, 1.0)
    (-4.863680881139592, u'teve', 0.0, 1.0)
    (-4.863680881139592, u'tive', 0.0, 1.0)
    (-4.863680881139592, u'todas', 0.0, 1.0)
    (-4.863680881139592, u'tr\xe1venia', 0.0, 1.0)
    (-4.863680881139592, u've\u013ek\xfd', 0.0, 1.0)
    (-4.863680881139592, u'vida', 0.0, 1.0)
    (-4.863680881139592, u'vo', 0.0, 1.0)
    (-4.863680881139592, u'vo\u013en\xe9ho', 0.0, 1.0)
    (-4.863680881139592, u'vysok\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'vy\u017eitia', 0.0, 1.0)
    (-4.863680881139592, u'v\xe4\u010d\u0161ine', 0.0, 1.0)
    (-4.863680881139592, u'v\u017edy', 0.0, 1.0)
    (-4.863680881139592, u'zauj\xedmav\xe9', 0.0, 1.0)
    (-4.863680881139592, u'zime', 0.0, 1.0)
    (-4.863680881139592, u'\u010dasu', 0.0, 1.0)
    (-4.863680881139592, u'\u010fal\u0161\xedmi', 0.0, 1.0)
    (-4.863680881139592, u'\u0161vaj\u010diarske', 0.0, 1.0)
    (-4.4582157730314274, u'de', 2.0, 2.0)
    (-4.4582157730314274, u'foi', 0.0, 2.0)
    (-4.4582157730314274, u'mais', 0.0, 2.0)
    (-4.4582157730314274, u'me', 0.0, 2.0)
    (-4.4582157730314274, u'\u010di', 0.0, 2.0)
    (-4.1705337005796466, u'as', 0.0, 3.0)
    (-4.1705337005796466, u'que', 4.0, 3.0)
    

    Now we see some patterns... Seems like the higher coefficient favors a class and the other tail favors the other, so you can simply do this:

    import codecs, re, time
    from itertools import chain
    
    import numpy as np
    
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    
    trainfile = 'train.txt'
    
    # Vectorizing data.
    train = []
    word_vectorizer = CountVectorizer(analyzer='word')
    trainset = word_vectorizer.fit_transform(codecs.open(trainfile,'r','utf8'))
    tags = ['bs','pt','bs','pt']
    
    # Training NB
    mnb = MultinomialNB()
    mnb.fit(trainset, tags)
    
    def most_informative_feature_for_binary_classification(vectorizer, classifier, n=10):
        class_labels = classifier.classes_
        feature_names = vectorizer.get_feature_names()
        topn_class1 = sorted(zip(classifier.coef_[0], feature_names))[:n]
        topn_class2 = sorted(zip(classifier.coef_[0], feature_names))[-n:]
    
        for coef, feat in topn_class1:
            print class_labels[0], coef, feat
    
        print
    
        for coef, feat in reversed(topn_class2):
            print class_labels[1], coef, feat
    
    
    most_informative_feature_for_binary_classification(word_vectorizer, mnb)
    

    [out]:

    bs -5.5568280617 acuerdo
    bs -5.5568280617 al
    bs -5.5568280617 alex
    bs -5.5568280617 algo
    bs -5.5568280617 andaba
    bs -5.5568280617 andrea
    bs -5.5568280617 bien
    bs -5.5568280617 buscando
    bs -5.5568280617 como
    bs -5.5568280617 con
    
    pt -4.17053370058 que
    pt -4.17053370058 as
    pt -4.45821577303 či
    pt -4.45821577303 me
    pt -4.45821577303 mais
    pt -4.45821577303 foi
    pt -4.45821577303 de
    pt -4.86368088114 švajčiarske
    pt -4.86368088114 ďalšími
    pt -4.86368088114 času
    

    Actually if you've read @larsmans comment carefully, he gave the hint on the binary classes' coefficient in How to get most informative features for scikit-learn classifiers?

    0 讨论(0)
  • 2020-12-05 13:20

    Basically you need:

    def most_informative_feature_for_class(vectorizer, classifier, classlabel, n=10):
        labelid = list(classifier.classes_).index(classlabel)
        feature_names = vectorizer.get_feature_names()
        topn = sorted(zip(classifier.coef_[labelid], feature_names))[-n:]
    
        for coef, feat in topn:
            print classlabel, feat, coef    
    
    • classifier.classes_ accesses the index of the class labels you have in the classifier

    • vectorizer.get_feature_names() is self-explanatory

    • sorted(zip(classifier.coef_[labelid], feature_names))[-n:] retrieves the coefficient of the classifier for a given class label and then sorts it in ascending order.


    I'm going to use a simple example from https://github.com/alvations/bayesline

    Input file train.txt:

    $ echo """Pošto je EULEX obećao da će obaviti istragu o prošlosedmičnom izbijanju nasilja na sjeveru Kosova, taj incident predstavlja još jedan ispit kapaciteta misije da doprinese jačanju vladavine prava.
    > De todas as provações que teve de suplantar ao longo da vida, qual foi a mais difícil? O início. Qualquer começo apresenta dificuldades que parecem intransponíveis. Mas tive sempre a minha mãe do meu lado. Foi ela quem me ajudou a encontrar forças para enfrentar as situações mais decepcionantes, negativas, as que me punham mesmo furiosa.
    > Al parecer, Andrea Guasch pone que una relación a distancia es muy difícil de llevar como excusa. Algo con lo que, por lo visto, Alex Lequio no está nada de acuerdo. ¿O es que más bien ya ha conseguido la fama que andaba buscando?
    > Vo väčšine golfových rezortov ide o veľký komplex niekoľkých ihrísk blízko pri sebe spojených s hotelmi a ďalšími možnosťami trávenia voľného času – nie vždy sú manželky či deti nadšenými golfistami, a tak potrebujú iný druh vyžitia. Zaujímavé kombinácie ponúkajú aj rakúske, švajčiarske či talianske Alpy, kde sa dá v zime lyžovať a v lete hrať golf pod vysokými alpskými končiarmi.""" > test.in
    

    Code:

    import codecs, re, time
    from itertools import chain
    
    import numpy as np
    
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    
    trainfile = 'train.txt'
    
    # Vectorizing data.
    train = []
    word_vectorizer = CountVectorizer(analyzer='word')
    trainset = word_vectorizer.fit_transform(codecs.open(trainfile,'r','utf8'))
    tags = ['bs','pt','es','sr']
    
    # Training NB
    mnb = MultinomialNB()
    mnb.fit(trainset, tags)
    
    def most_informative_feature_for_class(vectorizer, classifier, classlabel, n=10):
        labelid = list(classifier.classes_).index(classlabel)
        feature_names = vectorizer.get_feature_names()
        topn = sorted(zip(classifier.coef_[labelid], feature_names))[-n:]
    
        for coef, feat in topn:
            print classlabel, feat, coef
    
    
    
    most_informative_feature_for_class(word_vectorizer, mnb, 'bs')
    print 
    most_informative_feature_for_class(word_vectorizer, mnb, 'pt')
    

    [out]:

    bs obećao -4.50534985071
    bs pošto -4.50534985071
    bs prava -4.50534985071
    bs predstavlja -4.50534985071
    bs prošlosedmičnom -4.50534985071
    bs sjeveru -4.50534985071
    bs taj -4.50534985071
    bs vladavine -4.50534985071
    bs će -4.50534985071
    bs da -4.0998847426
    
    pt teve -4.63472898823
    pt tive -4.63472898823
    pt todas -4.63472898823
    pt vida -4.63472898823
    pt de -4.22926388012
    pt foi -4.22926388012
    pt mais -4.22926388012
    pt me -4.22926388012
    pt as -3.94158180767
    pt que -3.94158180767
    
    0 讨论(0)
提交回复
热议问题