Suppose I want to calculate the proportion of different values within each group. For example, using the mtcars
data, how do I calculate the relative f
I wrote a small function for this repeating task:
count_pct <- function(df) {
return(
df %>%
tally %>%
mutate(n_pct = 100*n/sum(n))
)
}
I can then use it like:
mtcars %>%
group_by(cyl) %>%
count_pct
It returns:
# A tibble: 3 x 3
cyl n n_pct
<dbl> <int> <dbl>
1 4 11 34.4
2 6 7 21.9
3 8 14 43.8
You can use count()
function, which has however a different behaviour depending on the version of dplyr
:
dplyr 0.7.1: returns an ungrouped table: you need to group again by am
dplyr < 0.7.1: returns a grouped table, so no need to group again, although you might want to ungroup()
for later manipulations
dplyr 0.7.1
mtcars %>%
count(am, gear) %>%
group_by(am) %>%
mutate(freq = n / sum(n))
dplyr < 0.7.1
mtcars %>%
count(am, gear) %>%
mutate(freq = n / sum(n))
This results into a grouped table, if you want to use it for further analysis, it might be useful to remove the grouped attribute with ungroup()
.
Here is a general function implementing Henrik's solution on dplyr
0.7.1.
freq_table <- function(x,
group_var,
prop_var) {
group_var <- enquo(group_var)
prop_var <- enquo(prop_var)
x %>%
group_by(!!group_var, !!prop_var) %>%
summarise(n = n()) %>%
mutate(freq = n /sum(n)) %>%
ungroup
}
Here is a base R answer using aggregate
and ave
:
df1 <- with(mtcars, aggregate(list(n = mpg), list(am = am, gear = gear), length))
df1$prop <- with(df1, n/ave(n, am, FUN = sum))
#Also with prop.table
#df1$prop <- with(df1, ave(n, am, FUN = prop.table))
df1
# am gear n prop
#1 0 3 15 0.7894737
#2 0 4 4 0.2105263
#3 1 4 8 0.6153846
#4 1 5 5 0.3846154
We can also use prop.table
but the output displays differently.
prop.table(table(mtcars$am, mtcars$gear), 1)
# 3 4 5
# 0 0.7894737 0.2105263 0.0000000
# 1 0.0000000 0.6153846 0.3846154
Despite the many answers, one more approach which uses prop.table
in combination with dplyr
or data.table
.
library("dplyr")
mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
mutate(freq = prop.table(n))
library("data.table")
cars_dt <- as.data.table(mtcars)
cars_dt[, .(n = .N), keyby = .(am, gear)][, freq := prop.table(n) , by = "am"]
@Henrik's is better for usability as this will make the column character and no longer numeric but matches what you asked for...
mtcars %>%
group_by (am, gear) %>%
summarise (n=n()) %>%
mutate(rel.freq = paste0(round(100 * n/sum(n), 0), "%"))
## am gear n rel.freq
## 1 0 3 15 79%
## 2 0 4 4 21%
## 3 1 4 8 62%
## 4 1 5 5 38%
EDIT Because Spacedman asked for it :-)
as.rel_freq <- function(x, rel_freq_col = "rel.freq", ...) {
class(x) <- c("rel_freq", class(x))
attributes(x)[["rel_freq_col"]] <- rel_freq_col
x
}
print.rel_freq <- function(x, ...) {
freq_col <- attributes(x)[["rel_freq_col"]]
x[[freq_col]] <- paste0(round(100 * x[[freq_col]], 0), "%")
class(x) <- class(x)[!class(x)%in% "rel_freq"]
print(x)
}
mtcars %>%
group_by (am, gear) %>%
summarise (n=n()) %>%
mutate(rel.freq = n/sum(n)) %>%
as.rel_freq()
## Source: local data frame [4 x 4]
## Groups: am
##
## am gear n rel.freq
## 1 0 3 15 79%
## 2 0 4 4 21%
## 3 1 4 8 62%
## 4 1 5 5 38%