This should be very simple and I\'m very surprised that I haven\'t been able to find this questions answered already on stackoverflow.
I have a daemon like program t
abarnert's answer was spot on. I'm still using Python 2.7 however. In order to solve this problem for myself I wrote an InterruptableThread class.
Right now it doesn't allow passing additional arguments to the thread target. Join doesn't accept a timeout parameter either. This is just because I don't need to do that. You can add it if you want. You will probably want to remove the output statements if you use this yourself. They are just there as a way of commenting and testing.
import threading
import signal
import sys
class InvalidOperationException(Exception):
pass
# noinspection PyClassHasNoInit
class GlobalInterruptableThreadHandler:
threads = []
initialized = False
@staticmethod
def initialize():
signal.signal(signal.SIGTERM, GlobalInterruptableThreadHandler.sig_handler)
signal.signal(signal.SIGINT, GlobalInterruptableThreadHandler.sig_handler)
GlobalInterruptableThreadHandler.initialized = True
@staticmethod
def add_thread(thread):
if threading.current_thread().name != 'MainThread':
raise InvalidOperationException("InterruptableThread objects may only be started from the Main thread.")
if not GlobalInterruptableThreadHandler.initialized:
GlobalInterruptableThreadHandler.initialize()
GlobalInterruptableThreadHandler.threads.append(thread)
@staticmethod
def sig_handler(signum, frame):
sys.stdout.write("handling signal: %s\n" % signum)
sys.stdout.flush()
for thread in GlobalInterruptableThreadHandler.threads:
thread.stop()
GlobalInterruptableThreadHandler.threads = []
class InterruptableThread:
def __init__(self, target=None):
self.stop_requested = threading.Event()
self.t = threading.Thread(target=target, args=[self]) if target else threading.Thread(target=self.run)
def run(self):
pass
def start(self):
GlobalInterruptableThreadHandler.add_thread(self)
self.t.start()
def stop(self):
self.stop_requested.set()
def is_stop_requested(self):
return self.stop_requested.is_set()
def join(self):
try:
while self.t.is_alive():
self.t.join(timeout=1)
except (KeyboardInterrupt, SystemExit):
self.stop_requested.set()
self.t.join()
sys.stdout.write("join completed\n")
sys.stdout.flush()
The class can be used two different ways. You can sub-class InterruptableThread:
import time
import sys
from interruptable_thread import InterruptableThread
class Foo(InterruptableThread):
def __init__(self):
InterruptableThread.__init__(self)
def run(self):
sys.stdout.write("run started\n")
sys.stdout.flush()
while not self.is_stop_requested():
time.sleep(2)
sys.stdout.write("run exited\n")
sys.stdout.flush()
sys.stdout.write("all exited\n")
sys.stdout.flush()
foo = Foo()
foo2 = Foo()
foo.start()
foo2.start()
foo.join()
foo2.join()
Or you can use it more like the way threading.thread works. The run method has to take the InterruptableThread object as a parameter though.
import time
import sys
from interruptable_thread import InterruptableThread
def run(t):
sys.stdout.write("run started\n")
sys.stdout.flush()
while not t.is_stop_requested():
time.sleep(2)
sys.stdout.write("run exited\n")
sys.stdout.flush()
t1 = InterruptableThread(run)
t2 = InterruptableThread(run)
t1.start()
t2.start()
t1.join()
t2.join()
sys.stdout.write("all exited\n")
sys.stdout.flush()
Do with it what you will.
I faced the same problem here signal not handled when multiple threads join. After reading abarnert's answer, I changed to Python 3 and solved the problem. But I do like to change all my program to python 3. So, I solved my program by avoiding calling thread join() before signal sent. Below is my code.
It is not very good, but solved my program in python 2.7. My question was marked as duplicated, so I put my solution here.
import threading, signal, time, os
RUNNING = True
threads = []
def monitoring(tid, itemId=None, threshold=None):
global RUNNING
while(RUNNING):
print "PID=", os.getpid(), ";id=", tid
time.sleep(2)
print "Thread stopped:", tid
def handler(signum, frame):
print "Signal is received:" + str(signum)
global RUNNING
RUNNING=False
#global threads
if __name__ == '__main__':
signal.signal(signal.SIGUSR1, handler)
signal.signal(signal.SIGUSR2, handler)
signal.signal(signal.SIGALRM, handler)
signal.signal(signal.SIGINT, handler)
signal.signal(signal.SIGQUIT, handler)
print "Starting all threads..."
thread1 = threading.Thread(target=monitoring, args=(1,), kwargs={'itemId':'1', 'threshold':60})
thread1.start()
threads.append(thread1)
thread2 = threading.Thread(target=monitoring, args=(2,), kwargs={'itemId':'2', 'threshold':60})
thread2.start()
threads.append(thread2)
while(RUNNING):
print "Main program is sleeping."
time.sleep(30)
for thread in threads:
thread.join()
print "All threads stopped."
The problem is that, as explained in Execution of Python signal handlers:
A Python signal handler does not get executed inside the low-level (C) signal handler. Instead, the low-level signal handler sets a flag which tells the virtual machine to execute the corresponding Python signal handler at a later point(for example at the next bytecode instruction)
…
A long-running calculation implemented purely in C (such as regular expression matching on a large body of text) may run uninterrupted for an arbitrary amount of time, regardless of any signals received. The Python signal handlers will be called when the calculation finishes.
Your main thread is blocked on threading.Thread.join
, which ultimately means it's blocked in C on a pthread_join
call. Of course that's not a "long-running calculation", it's a block on a syscall… but nevertheless, until that call finishes, your signal handler can't run.
And, while on some platforms pthread_join
will fail with EINTR
on a signal, on others it won't. On linux, I believe it depends on whether you select BSD-style or default siginterrupt
behavior, but the default is no.
So, what can you do about it?
Well, I'm pretty sure the changes to signal handling in Python 3.3 actually changed the default behavior on Linux so you won't need to do anything if you upgrade; just run under 3.3+ and your code will work as you're expecting. At least it does for me with CPython 3.4 on OS X and 3.3 on Linux. (If I'm wrong about this, I'm not sure whether it's a bug in CPython or not, so you may want to raise it on python-list rather than opening an issue…)
On the other hand, pre-3.3, the signal
module definitely doesn't expose the tools you'd need to fix this problem yourself. So, if you can't upgrade to 3.3, the solution is to wait on something interruptible, like a Condition
or an Event
. The child thread notifies the event right before it quits, and the main thread waits on the event before it joins the child thread. This is definitely hacky. And I can't find anything that guarantees it will make a difference; it just happens to work for me in various builds of CPython 2.7 and 3.2 on OS X and 2.6 and 2.7 on Linux…