How to convert index of a pandas dataframe into a column?

前端 未结 7 576
后悔当初
后悔当初 2020-11-22 08:54

This seems rather obvious, but I can\'t seem to figure out how to convert an index of data frame to a column?

For example:

df=
        gi       ptt_l         


        
相关标签:
7条回答
  • 2020-11-22 09:23

    A very simple way of doing this is to use reset_index() method.For a data frame df use the code below:

    df.reset_index(inplace=True)
    

    This way, the index will become a column, and by using inplace as True,this become permanent change.

    0 讨论(0)
  • 2020-11-22 09:25

    rename_axis + reset_index

    You can first rename your index to a desired label, then elevate to a series:

    df = df.rename_axis('index1').reset_index()
    
    print(df)
    
       index1         gi  ptt_loc
    0       0  384444683      593
    1       1  384444684      594
    2       2  384444686      596
    

    This works also for MultiIndex dataframes:

    print(df)
    #                        val
    # tick       tag obs        
    # 2016-02-26 C   2    0.0139
    # 2016-02-27 A   2    0.5577
    # 2016-02-28 C   6    0.0303
    
    df = df.rename_axis(['index1', 'index2', 'index3']).reset_index()
    
    print(df)
    
           index1 index2  index3     val
    0  2016-02-26      C       2  0.0139
    1  2016-02-27      A       2  0.5577
    2  2016-02-28      C       6  0.0303
    
    0 讨论(0)
  • 2020-11-22 09:33
    df1 = pd.DataFrame({"gi":[232,66,34,43],"ptt":[342,56,662,123]})
    p = df1.index.values
    df1.insert( 0, column="new",value = p)
    df1
    
        new     gi     ptt
    0    0      232    342
    1    1      66     56 
    2    2      34     662
    3    3      43     123
    
    0 讨论(0)
  • 2020-11-22 09:42

    either:

    df['index1'] = df.index
    

    or, .reset_index:

    df.reset_index(level=0, inplace=True)
    

    so, if you have a multi-index frame with 3 levels of index, like:

    >>> df
                           val
    tick       tag obs        
    2016-02-26 C   2    0.0139
    2016-02-27 A   2    0.5577
    2016-02-28 C   6    0.0303
    

    and you want to convert the 1st (tick) and 3rd (obs) levels in the index into columns, you would do:

    >>> df.reset_index(level=['tick', 'obs'])
              tick  obs     val
    tag                        
    C   2016-02-26    2  0.0139
    A   2016-02-27    2  0.5577
    C   2016-02-28    6  0.0303
    
    0 讨论(0)
  • 2020-11-22 09:43

    To provide a bit more clarity, let's look at a DataFrame with two levels in its index (a MultiIndex).

    index = pd.MultiIndex.from_product([['TX', 'FL', 'CA'], 
                                        ['North', 'South']], 
                                       names=['State', 'Direction'])
    
    df = pd.DataFrame(index=index, 
                      data=np.random.randint(0, 10, (6,4)), 
                      columns=list('abcd'))
    

    The reset_index method, called with the default parameters, converts all index levels to columns and uses a simple RangeIndex as new index.

    df.reset_index()
    

    Use the level parameter to control which index levels are converted into columns. If possible, use the level name, which is more explicit. If there are no level names, you can refer to each level by its integer location, which begin at 0 from the outside. You can use a scalar value here or a list of all the indexes you would like to reset.

    df.reset_index(level='State') # same as df.reset_index(level=0)
    

    In the rare event that you want to preserve the index and turn the index into a column, you can do the following:

    # for a single level
    df.assign(State=df.index.get_level_values('State'))
    
    # for all levels
    df.assign(**df.index.to_frame())
    
    0 讨论(0)
  • 2020-11-22 09:45

    If you want to use the reset_index method and also preserve your existing index you should use:

    df.reset_index().set_index('index', drop=False)
    

    or to change it in place:

    df.reset_index(inplace=True)
    df.set_index('index', drop=False, inplace=True)
    

    For example:

    print(df)
              gi  ptt_loc
    0  384444683      593
    4  384444684      594
    9  384444686      596
    
    print(df.reset_index())
       index         gi  ptt_loc
    0      0  384444683      593
    1      4  384444684      594
    2      9  384444686      596
    
    print(df.reset_index().set_index('index', drop=False))
           index         gi  ptt_loc
    index
    0          0  384444683      593
    4          4  384444684      594
    9          9  384444686      596
    

    And if you want to get rid of the index label you can do:

    df2 = df.reset_index().set_index('index', drop=False)
    df2.index.name = None
    print(df2)
       index         gi  ptt_loc
    0      0  384444683      593
    4      4  384444684      594
    9      9  384444686      596
    
    0 讨论(0)
提交回复
热议问题