This is probably pretty basic, but to save me an hour or so of grief can anyone tell me how you can work out the number of bits required to represent a given positive intege
Integer.toBinaryString(number).length();
Good grief... why the down votes?
public class Main
{
public static void main(final String[] argv)
{
System.out.println(Integer.toBinaryString(0).length());
System.out.println(Integer.toBinaryString(1).length());
System.out.println(Integer.toBinaryString(2).length());
System.out.println(Integer.toBinaryString(3).length());
System.out.println(Integer.toBinaryString(4).length());
System.out.println(Integer.toBinaryString(5).length());
System.out.println(Integer.toBinaryString(6).length());
System.out.println(Integer.toBinaryString(7).length());
System.out.println(Integer.toBinaryString(8).length());
System.out.println(Integer.toBinaryString(9).length());
}
}
Output:
1
1
2
2
3
3
3
3
4
4
Here is a simple test for the speed of the various solutions:
public class Tester
{
public static void main(final String[] argv)
{
final int size;
final long totalA;
final long totalB;
final long totalC;
final long totalD;
size = 100000000;
totalA = test(new A(), size);
totalB = test(new B(), size);
totalC = test(new C(), size);
totalD = test(new D(), size);
System.out.println();
System.out.println("Total D = " + totalD + " ms");
System.out.println("Total B = " + totalB + " ms");
System.out.println("Total C = " + totalC + " ms");
System.out.println("Total A = " + totalA + " ms");
System.out.println();
System.out.println("Total B = " + (totalB / totalD) + " times slower");
System.out.println("Total C = " + (totalC / totalD) + " times slower");
System.out.println("Total A = " + (totalA / totalD) + " times slower");
}
private static long test(final Testable tester,
final int size)
{
final long start;
final long end;
final long total;
start = System.nanoTime();
tester.test(size);
end = System.nanoTime();
total = end - start;
return (total / 1000000);
}
private static interface Testable
{
void test(int size);
}
private static class A
implements Testable
{
@Override
public void test(final int size)
{
int value;
value = 0;
for(int i = 1; i < size; i++)
{
value += Integer.toBinaryString(i).length();
}
System.out.println("value = " + value);
}
}
private static class B
implements Testable
{
@Override
public void test(final int size)
{
int total;
total = 0;
for(int i = 1; i < size; i++)
{
int value = i;
int count = 0;
while (value > 0)
{
count++;
value >>= 1;
}
total += count;
}
System.out.println("total = " + total);
}
}
private static class C
implements Testable
{
@Override
public void test(final int size)
{
int total;
final double log2;
total = 0;
log2 = Math.log(2);
for(int i = 1; i < size; i++)
{
final double logX;
final double temp;
logX = Math.log(i);
temp = logX / log2;
total += (int)Math.floor(temp) + 1;
}
System.out.println("total = " + total);
}
}
private static class D
implements Testable
{
@Override
public void test(final int size)
{
int total;
total = 0;
for(int i = 1; i < size; i++)
{
total += 32-Integer.numberOfLeadingZeros(i);
}
System.out.println("total = " + total);
}
}
}
Output on my machine is:
value = -1729185023
total = -1729185023
total = -1729185023
total = -1729185023
Total D = 118 ms
Total B = 1722 ms
Total C = 4462 ms
Total A = 5704 ms
Total B = 14 times slower
Total C = 37 times slower
Total A = 48 times slower
For those of you complaining about speed... https://en.wikipedia.org/wiki/Program_optimization#Quotes.
Write the program to be readable first, then find out where it is slow, then make it faster. Before and after you optimize test the change. If the change wasn't large enough for the expense of making the code less readable don't bother with the change.
This one works for me!
int numberOfBitsRequired(int n)
{
return (int)Math.floor(Math.log(n)/Math.log(2)) + 1;
}
To include negative numbers as well, you can add an extra bit and use it to specify the sign.
public static int numberOfBitsRequiredSigned(int n)
{
return (int)Math.floor(Math.log(Math.abs(n))/Math.log(2)) + 2;
}
What about something like this:
public static int getNumberOfBits(int N) {
int bits = 0;
while(Math.pow(2, bits) <= N){
bits++;
}
return bits;
}
I know you are looking for a way to not use loops, but I feel this is pretty strait forward otherwise since bits are just a two to the power of a number.
(int) Math.ceil((Math.log(n) / Math.log(2))
Of course this only works for positive integers.
Well, the answer is pretty simple. If you have an int value:
int log2(int value) {
return Integer.SIZE-Integer.numberOfLeadingZeros(value);
}
The same exists for Long...
[Edit] If shaving milliseconds is an issue here, Integer.numberOfLeadingZeros(int) is reasonably efficient, but still does 15 operations... Expanding a reasonable amount of memory (300 bytes, static) you could shave that to between 1 and 8 operations, depending on the range of your integers.
If you're trying to avoid a loop and you care about speed, you can use a method like this:
int value = ...;
int count = 0;
if( value < 0 ) { value = 0; count = 32; }
if( value >= 0x7FFF ) { value >>= 16; count += 16; }
if( value >= 0x7F ) { value >>= 8; count += 8; }
if( value >= 0x7 ) { value >>= 4; count += 4; }
if( value >= 0x3 ) { value >>= 2; count += 2; }
if( value >= 0x1 ) { value >>= 1; count += 1; }
Java doesn't have unsigned integers, so that first if( value < 0 ) is a little questionable. Negative numbers always set the most significant bit, so arguably require the full word to to represent them. Adapt that behavior if you care.
Incidentally, to handle a 64-bit integer, replace the if( value < 0 ) line with these two:
if( value < 0 ) { value = 0; count = 64; }
if( value >= 0x7FFFFFFF ) { value >>= 32; count += 32; }