Spark Equivalent of IF Then ELSE

后端 未结 4 651
梦如初夏
梦如初夏 2020-11-22 08:37

I have seen this question earlier here and I have took lessons from that. However I am not sure why I am getting an error when I feel it should work.

I want to crea

相关标签:
4条回答
  • 2020-11-22 09:16

    Conditional statement In Spark

    • Using “when otherwise” on DataFrame
    • Using “case when” on DataFrame
    • Using && and || operator

    import org.apache.spark.sql.functions.{when, _}
    import spark.sqlContext.implicits._
    
    val spark: SparkSession = SparkSession.builder().master("local[1]").appName("SparkByExamples.com").getOrCreate()
    
    val data = List(("James ","","Smith","36636","M",60000),
            ("Michael ","Rose","","40288","M",70000),
            ("Robert ","","Williams","42114","",400000),
            ("Maria ","Anne","Jones","39192","F",500000),
            ("Jen","Mary","Brown","","F",0))
    
    val cols = Seq("first_name","middle_name","last_name","dob","gender","salary")
    val df = spark.createDataFrame(data).toDF(cols:_*)
    

    1. Using “when otherwise” on DataFrame

    Replace the value of gender with new value

    val df1 = df.withColumn("new_gender", when(col("gender") === "M","Male")
          .when(col("gender") === "F","Female")
          .otherwise("Unknown"))
    
    val df2 = df.select(col("*"), when(col("gender") === "M","Male")
          .when(col("gender") === "F","Female")
          .otherwise("Unknown").alias("new_gender"))
    

    2. Using “case when” on DataFrame

    val df3 = df.withColumn("new_gender",
      expr("case when gender = 'M' then 'Male' " +
                       "when gender = 'F' then 'Female' " +
                       "else 'Unknown' end"))
    

    Alternatively,

    val df4 = df.select(col("*"),
          expr("case when gender = 'M' then 'Male' " +
                           "when gender = 'F' then 'Female' " +
                           "else 'Unknown' end").alias("new_gender"))
    

    3. Using && and || operator

    val dataDF = Seq(
          (66, "a", "4"), (67, "a", "0"), (70, "b", "4"), (71, "d", "4"
          )).toDF("id", "code", "amt")
    dataDF.withColumn("new_column",
           when(col("code") === "a" || col("code") === "d", "A")
          .when(col("code") === "b" && col("amt") === "4", "B")
          .otherwise("A1"))
          .show()
    

    Output:

    +---+----+---+----------+
    | id|code|amt|new_column|
    +---+----+---+----------+
    | 66|   a|  4|         A|
    | 67|   a|  0|         A|
    | 70|   b|  4|         B|
    | 71|   d|  4|         A|
    +---+----+---+----------+
    
    0 讨论(0)
  • 2020-11-22 09:30

    you can use this: if(exp1, exp2, exp3) inside spark.sql() where exp1 is condition and if true give me exp2, else give me exp3.

    now the funny thing with nested if-else is. you need to pass every exp inside

    brackets {"()"}
    else it will raise error.
    

    example:

    if((1>2), (if (2>3), True, False), (False))
    
    0 讨论(0)
  • 2020-11-22 09:31

    There are different ways you can achieve if-then-else.

    1. Using when function in DataFrame API. You can specify the list of conditions in when and also can specify otherwise what value you need. You can use this expression in nested form as well.

    2. expr function. Using "expr" function you can pass SQL expression in expr. PFB example. Here we are creating new column "quarter" based on month column.

    cond = """case when month > 9 then 'Q4'
                else case when month > 6 then 'Q3'
                    else case when month > 3 then 'Q2'
                        else case when month > 0 then 'Q1'
                            end
                        end
                    end
                end as quarter"""
    
    newdf = df.withColumn("quarter", expr(cond))
    
    1. selectExpr function. We can also use the variant of select function which can take SQL expression. PFB example.
        cond = """case when month > 9 then 'Q4'
                    else case when month > 6 then 'Q3'
                        else case when month > 3 then 'Q2'
                            else case when month > 0 then 'Q1'
                                end
                            end
                        end
                    end as quarter"""
    
        newdf = df.selectExpr("*", cond)
    
    
    0 讨论(0)
  • 2020-11-22 09:35

    Correct structure is either:

    (when(col("iris_class") == 'Iris-setosa', 0)
    .when(col("iris_class") == 'Iris-versicolor', 1)
    .otherwise(2))
    

    which is equivalent to

    CASE 
        WHEN (iris_class = 'Iris-setosa') THEN 0
        WHEN (iris_class = 'Iris-versicolor') THEN 1 
        ELSE 2
    END
    

    or:

    (when(col("iris_class") == 'Iris-setosa', 0)
        .otherwise(when(col("iris_class") == 'Iris-versicolor', 1)
            .otherwise(2)))
    

    which is equivalent to:

    CASE WHEN (iris_class = 'Iris-setosa') THEN 0 
         ELSE CASE WHEN (iris_class = 'Iris-versicolor') THEN 1 
                   ELSE 2 
              END 
    END
    

    with general syntax:

    when(condition, value).when(...)
    

    or

    when(condition, value).otherwise(...)
    

    You probably mixed up things with Hive IF conditional:

    IF(condition, if-true, if-false)
    

    which can be used only in raw SQL with Hive support.

    0 讨论(0)
提交回复
热议问题