How to remove convexity defects in a Sudoku square?

前端 未结 6 915
庸人自扰
庸人自扰 2020-11-22 08:29

I was doing a fun project: Solving a Sudoku from an input image using OpenCV (as in Google goggles etc). And I have completed the task, but at the end I found a little probl

相关标签:
6条回答
  • 2020-11-22 08:47

    I have a solution that works, but you'll have to translate it to OpenCV yourself. It's written in Mathematica.

    The first step is to adjust the brightness in the image, by dividing each pixel with the result of a closing operation:

    src = ColorConvert[Import["http://davemark.com/images/sudoku.jpg"], "Grayscale"];
    white = Closing[src, DiskMatrix[5]];
    srcAdjusted = Image[ImageData[src]/ImageData[white]]
    

    enter image description here

    The next step is to find the sudoku area, so I can ignore (mask out) the background. For that, I use connected component analysis, and select the component that's got the largest convex area:

    components = 
      ComponentMeasurements[
        ColorNegate@Binarize[srcAdjusted], {"ConvexArea", "Mask"}][[All, 
        2]];
    largestComponent = Image[SortBy[components, First][[-1, 2]]]
    

    enter image description here

    By filling this image, I get a mask for the sudoku grid:

    mask = FillingTransform[largestComponent]
    

    enter image description here

    Now, I can use a 2nd order derivative filter to find the vertical and horizontal lines in two separate images:

    lY = ImageMultiply[MorphologicalBinarize[GaussianFilter[srcAdjusted, 3, {2, 0}], {0.02, 0.05}], mask];
    lX = ImageMultiply[MorphologicalBinarize[GaussianFilter[srcAdjusted, 3, {0, 2}], {0.02, 0.05}], mask];
    

    enter image description here

    I use connected component analysis again to extract the grid lines from these images. The grid lines are much longer than the digits, so I can use caliper length to select only the grid lines-connected components. Sorting them by position, I get 2x10 mask images for each of the vertical/horizontal grid lines in the image:

    verticalGridLineMasks = 
      SortBy[ComponentMeasurements[
          lX, {"CaliperLength", "Centroid", "Mask"}, # > 100 &][[All, 
          2]], #[[2, 1]] &][[All, 3]];
    horizontalGridLineMasks = 
      SortBy[ComponentMeasurements[
          lY, {"CaliperLength", "Centroid", "Mask"}, # > 100 &][[All, 
          2]], #[[2, 2]] &][[All, 3]];
    

    enter image description here

    Next I take each pair of vertical/horizontal grid lines, dilate them, calculate the pixel-by-pixel intersection, and calculate the center of the result. These points are the grid line intersections:

    centerOfGravity[l_] := 
     ComponentMeasurements[Image[l], "Centroid"][[1, 2]]
    gridCenters = 
      Table[centerOfGravity[
        ImageData[Dilation[Image[h], DiskMatrix[2]]]*
         ImageData[Dilation[Image[v], DiskMatrix[2]]]], {h, 
        horizontalGridLineMasks}, {v, verticalGridLineMasks}];
    

    enter image description here

    The last step is to define two interpolation functions for X/Y mapping through these points, and transform the image using these functions:

    fnX = ListInterpolation[gridCenters[[All, All, 1]]];
    fnY = ListInterpolation[gridCenters[[All, All, 2]]];
    transformed = 
     ImageTransformation[
      srcAdjusted, {fnX @@ Reverse[#], fnY @@ Reverse[#]} &, {9*50, 9*50},
       PlotRange -> {{1, 10}, {1, 10}}, DataRange -> Full]
    

    enter image description here

    All of the operations are basic image processing function, so this should be possible in OpenCV, too. The spline-based image transformation might be harder, but I don't think you really need it. Probably using the perspective transformation you use now on each individual cell will give good enough results.

    0 讨论(0)
  • 2020-11-22 08:47

    Nikie's answer solved my problem, but his answer was in Mathematica. So I thought I should give its OpenCV adaptation here. But after implementing I could see that OpenCV code is much bigger than nikie's mathematica code. And also, I couldn't find interpolation method done by nikie in OpenCV ( although it can be done using scipy, i will tell it when time comes.)

    1. Image PreProcessing ( closing operation )

    import cv2
    import numpy as np
    
    img = cv2.imread('dave.jpg')
    img = cv2.GaussianBlur(img,(5,5),0)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    mask = np.zeros((gray.shape),np.uint8)
    kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
    
    close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
    div = np.float32(gray)/(close)
    res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
    res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
    

    Result :

    Result of closing

    2. Finding Sudoku Square and Creating Mask Image

    thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
    contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    
    max_area = 0
    best_cnt = None
    for cnt in contour:
        area = cv2.contourArea(cnt)
        if area > 1000:
            if area > max_area:
                max_area = area
                best_cnt = cnt
    
    cv2.drawContours(mask,[best_cnt],0,255,-1)
    cv2.drawContours(mask,[best_cnt],0,0,2)
    
    res = cv2.bitwise_and(res,mask)
    

    Result :

    enter image description here

    3. Finding Vertical lines

    kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
    
    dx = cv2.Sobel(res,cv2.CV_16S,1,0)
    dx = cv2.convertScaleAbs(dx)
    cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
    ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
    
    contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x,y,w,h = cv2.boundingRect(cnt)
        if h/w > 5:
            cv2.drawContours(close,[cnt],0,255,-1)
        else:
            cv2.drawContours(close,[cnt],0,0,-1)
    close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
    closex = close.copy()
    

    Result :

    enter image description here

    4. Finding Horizontal Lines

    kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
    dy = cv2.Sobel(res,cv2.CV_16S,0,2)
    dy = cv2.convertScaleAbs(dy)
    cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
    ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
    
    contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x,y,w,h = cv2.boundingRect(cnt)
        if w/h > 5:
            cv2.drawContours(close,[cnt],0,255,-1)
        else:
            cv2.drawContours(close,[cnt],0,0,-1)
    
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
    closey = close.copy()
    

    Result :

    enter image description here

    Of course, this one is not so good.

    5. Finding Grid Points

    res = cv2.bitwise_and(closex,closey)
    

    Result :

    enter image description here

    6. Correcting the defects

    Here, nikie does some kind of interpolation, about which I don't have much knowledge. And i couldn't find any corresponding function for this OpenCV. (may be it is there, i don't know).

    Check out this SOF which explains how to do this using SciPy, which I don't want to use : Image transformation in OpenCV

    So, here I took 4 corners of each sub-square and applied warp Perspective to each.

    For that, first we find the centroids.

    contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
    centroids = []
    for cnt in contour:
        mom = cv2.moments(cnt)
        (x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
        cv2.circle(img,(x,y),4,(0,255,0),-1)
        centroids.append((x,y))
    

    But resulting centroids won't be sorted. Check out below image to see their order:

    enter image description here

    So we sort them from left to right, top to bottom.

    centroids = np.array(centroids,dtype = np.float32)
    c = centroids.reshape((100,2))
    c2 = c[np.argsort(c[:,1])]
    
    b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in xrange(10)])
    bm = b.reshape((10,10,2))
    

    Now see below their order :

    enter image description here

    Finally we apply the transformation and create a new image of size 450x450.

    output = np.zeros((450,450,3),np.uint8)
    for i,j in enumerate(b):
        ri = i/10
        ci = i%10
        if ci != 9 and ri!=9:
            src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
            dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
            retval = cv2.getPerspectiveTransform(src,dst)
            warp = cv2.warpPerspective(res2,retval,(450,450))
            output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
    

    Result :

    enter image description here

    The result is almost same as nikie's, but code length is large. May be, better methods are available out there, but until then, this works OK.

    Regards ARK.

    0 讨论(0)
  • 2020-11-22 09:06

    You could try to use some kind of grid based modeling of you arbitrary warping. And since the sudoku already is a grid, that shouldn't be too hard.

    So you could try to detect the boundaries of each 3x3 subregion and then warp each region individually. If the detection succeeds it would give you a better approximation.

    0 讨论(0)
  • 2020-11-22 09:08

    To remove undected corners I applied gamma correction with a gamma value of 0.8.

    The red circle is drawn to show the missing corner.

    The code is:

    gamma = 0.8
    invGamma = 1/gamma
    table = np.array([((i / 255.0) ** invGamma) * 255
                      for i in np.arange(0, 256)]).astype("uint8")
    cv2.LUT(img, table, img)
    

    This is in addition to Abid Rahman's answer if some corner points are missing.

    0 讨论(0)
  • 2020-11-22 09:08

    I thought this was a great post, and a great solution by ARK; very well laid out and explained.

    I was working on a similar problem, and built the entire thing. There were some changes (i.e. xrange to range, arguments in cv2.findContours), but this should work out of the box (Python 3.5, Anaconda).

    This is a compilation of the elements above, with some of the missing code added (i.e., labeling of points).

    '''
    
    https://stackoverflow.com/questions/10196198/how-to-remove-convexity-defects-in-a-sudoku-square
    
    '''
    
    import cv2
    import numpy as np
    
    img = cv2.imread('test.png')
    
    winname="raw image"
    cv2.namedWindow(winname)
    cv2.imshow(winname, img)
    cv2.moveWindow(winname, 100,100)
    
    
    img = cv2.GaussianBlur(img,(5,5),0)
    
    winname="blurred"
    cv2.namedWindow(winname)
    cv2.imshow(winname, img)
    cv2.moveWindow(winname, 100,150)
    
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    mask = np.zeros((gray.shape),np.uint8)
    kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
    
    winname="gray"
    cv2.namedWindow(winname)
    cv2.imshow(winname, gray)
    cv2.moveWindow(winname, 100,200)
    
    close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
    div = np.float32(gray)/(close)
    res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
    res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
    
    winname="res2"
    cv2.namedWindow(winname)
    cv2.imshow(winname, res2)
    cv2.moveWindow(winname, 100,250)
    
     #find elements
    thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
    img_c, contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    
    max_area = 0
    best_cnt = None
    for cnt in contour:
        area = cv2.contourArea(cnt)
        if area > 1000:
            if area > max_area:
                max_area = area
                best_cnt = cnt
    
    cv2.drawContours(mask,[best_cnt],0,255,-1)
    cv2.drawContours(mask,[best_cnt],0,0,2)
    
    res = cv2.bitwise_and(res,mask)
    
    winname="puzzle only"
    cv2.namedWindow(winname)
    cv2.imshow(winname, res)
    cv2.moveWindow(winname, 100,300)
    
    # vertical lines
    kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
    
    dx = cv2.Sobel(res,cv2.CV_16S,1,0)
    dx = cv2.convertScaleAbs(dx)
    cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
    ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
    
    img_d, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x,y,w,h = cv2.boundingRect(cnt)
        if h/w > 5:
            cv2.drawContours(close,[cnt],0,255,-1)
        else:
            cv2.drawContours(close,[cnt],0,0,-1)
    close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
    closex = close.copy()
    
    winname="vertical lines"
    cv2.namedWindow(winname)
    cv2.imshow(winname, img_d)
    cv2.moveWindow(winname, 100,350)
    
    # find horizontal lines
    kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
    dy = cv2.Sobel(res,cv2.CV_16S,0,2)
    dy = cv2.convertScaleAbs(dy)
    cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
    ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
    
    img_e, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    
    for cnt in contour:
        x,y,w,h = cv2.boundingRect(cnt)
        if w/h > 5:
            cv2.drawContours(close,[cnt],0,255,-1)
        else:
            cv2.drawContours(close,[cnt],0,0,-1)
    
    close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
    closey = close.copy()
    
    winname="horizontal lines"
    cv2.namedWindow(winname)
    cv2.imshow(winname, img_e)
    cv2.moveWindow(winname, 100,400)
    
    
    # intersection of these two gives dots
    res = cv2.bitwise_and(closex,closey)
    
    winname="intersections"
    cv2.namedWindow(winname)
    cv2.imshow(winname, res)
    cv2.moveWindow(winname, 100,450)
    
    # text blue
    textcolor=(0,255,0)
    # points green
    pointcolor=(255,0,0)
    
    # find centroids and sort
    img_f, contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
    centroids = []
    for cnt in contour:
        mom = cv2.moments(cnt)
        (x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
        cv2.circle(img,(x,y),4,(0,255,0),-1)
        centroids.append((x,y))
    
    # sorting
    centroids = np.array(centroids,dtype = np.float32)
    c = centroids.reshape((100,2))
    c2 = c[np.argsort(c[:,1])]
    
    b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in range(10)])
    bm = b.reshape((10,10,2))
    
    # make copy
    labeled_in_order=res2.copy()
    
    for index, pt in enumerate(b):
        cv2.putText(labeled_in_order,str(index),tuple(pt),cv2.FONT_HERSHEY_DUPLEX, 0.75, textcolor)
        cv2.circle(labeled_in_order, tuple(pt), 5, pointcolor)
    
    winname="labeled in order"
    cv2.namedWindow(winname)
    cv2.imshow(winname, labeled_in_order)
    cv2.moveWindow(winname, 100,500)
    
    # create final
    
    output = np.zeros((450,450,3),np.uint8)
    for i,j in enumerate(b):
        ri = int(i/10) # row index
        ci = i%10 # column index
        if ci != 9 and ri!=9:
            src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
            dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
            retval = cv2.getPerspectiveTransform(src,dst)
            warp = cv2.warpPerspective(res2,retval,(450,450))
            output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
    
    winname="final"
    cv2.namedWindow(winname)
    cv2.imshow(winname, output)
    cv2.moveWindow(winname, 600,100)
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    0 讨论(0)
  • 2020-11-22 09:09

    I want to add that above method works only when sudoku board stands straight, otherwise height/width (or vice versa) ratio test will most probably fail and you will not be able to detect edges of sudoku. (I also want to add that if lines that are not perpendicular to the image borders, sobel operations (dx and dy) will still work as lines will still have edges with respect to both axes.)

    To be able to detect straight lines you should work on contour or pixel-wise analysis such as contourArea/boundingRectArea, top left and bottom right points...

    Edit: I managed to check whether a set of contours form a line or not by applying linear regression and checking the error. However linear regression performed poorly when slope of the line is too big (i.e. >1000) or it is very close to 0. Therefore applying the ratio test above (in most upvoted answer) before linear regression is logical and did work for me.

    0 讨论(0)
提交回复
热议问题