All I know about TypeTags is that they somehow replaced Manifests. Information on the Internet is scarce and doesn\'t provide me with a good sense of the subject.
So
A TypeTag
solves the problem that Scala's types are erased at runtime (type erasure). If we wanna do
class Foo
class Bar extends Foo
def meth[A](xs: List[A]) = xs match {
case _: List[String] => "list of strings"
case _: List[Foo] => "list of foos"
}
we will get warnings:
<console>:23: warning: non-variable type argument String in type pattern List[String]↩
is unchecked since it is eliminated by erasure
case _: List[String] => "list of strings"
^
<console>:24: warning: non-variable type argument Foo in type pattern List[Foo]↩
is unchecked since it is eliminated by erasure
case _: List[Foo] => "list of foos"
^
To solve this problem Manifests were introduced to Scala. But they have the problem not being able to represent a lot of useful types, like path-dependent-types:
scala> class Foo{class Bar}
defined class Foo
scala> def m(f: Foo)(b: f.Bar)(implicit ev: Manifest[f.Bar]) = ev
warning: there were 2 deprecation warnings; re-run with -deprecation for details
m: (f: Foo)(b: f.Bar)(implicit ev: Manifest[f.Bar])Manifest[f.Bar]
scala> val f1 = new Foo;val b1 = new f1.Bar
f1: Foo = Foo@681e731c
b1: f1.Bar = Foo$Bar@271768ab
scala> val f2 = new Foo;val b2 = new f2.Bar
f2: Foo = Foo@3e50039c
b2: f2.Bar = Foo$Bar@771d16b9
scala> val ev1 = m(f1)(b1)
warning: there were 2 deprecation warnings; re-run with -deprecation for details
ev1: Manifest[f1.Bar] = Foo@681e731c.type#Foo$Bar
scala> val ev2 = m(f2)(b2)
warning: there were 2 deprecation warnings; re-run with -deprecation for details
ev2: Manifest[f2.Bar] = Foo@3e50039c.type#Foo$Bar
scala> ev1 == ev2 // they should be different, thus the result is wrong
res28: Boolean = true
Thus, they are replaced by TypeTags, which are both much simpler to use and well integrated into the new Reflection API. With them we can solve the problem above about path-dependent-types elegantly:
scala> def m(f: Foo)(b: f.Bar)(implicit ev: TypeTag[f.Bar]) = ev
m: (f: Foo)(b: f.Bar)(implicit ev: reflect.runtime.universe.TypeTag[f.Bar])↩
reflect.runtime.universe.TypeTag[f.Bar]
scala> val ev1 = m(f1)(b1)
ev1: reflect.runtime.universe.TypeTag[f1.Bar] = TypeTag[f1.Bar]
scala> val ev2 = m(f2)(b2)
ev2: reflect.runtime.universe.TypeTag[f2.Bar] = TypeTag[f2.Bar]
scala> ev1 == ev2 // the result is correct, the type tags are different
res30: Boolean = false
scala> ev1.tpe =:= ev2.tpe // this result is correct, too
res31: Boolean = false
They are also easy to use to check type parameters:
import scala.reflect.runtime.universe._
def meth[A : TypeTag](xs: List[A]) = typeOf[A] match {
case t if t =:= typeOf[String] => "list of strings"
case t if t <:< typeOf[Foo] => "list of foos"
}
scala> meth(List("string"))
res67: String = list of strings
scala> meth(List(new Bar))
res68: String = list of foos
At this point, it is extremely important to understand to use =:=
(type equality) and <:<
(subtype relation) for equality checks. Do never use ==
or !=
, unless you absolutely know what you do:
scala> typeOf[List[java.lang.String]] =:= typeOf[List[Predef.String]]
res71: Boolean = true
scala> typeOf[List[java.lang.String]] == typeOf[List[Predef.String]]
res72: Boolean = false
The latter checks for structural equality, which often is not what should be done because it doesn't care about things such as prefixes (like in the example).
A TypeTag
is completely compiler-generated, that means that the compiler creates and fills in a TypeTag
when one calls a method expecting such a TypeTag
. There exist three different forms of tags:
ClassTag
substitutes ClassManifest
whereas TypeTag
is more or less the replacement for Manifest
.
The former allows to fully work with generic arrays:
scala> import scala.reflect._
import scala.reflect._
scala> def createArr[A](seq: A*) = Array[A](seq: _*)
<console>:22: error: No ClassTag available for A
def createArr[A](seq: A*) = Array[A](seq: _*)
^
scala> def createArr[A : ClassTag](seq: A*) = Array[A](seq: _*)
createArr: [A](seq: A*)(implicit evidence$1: scala.reflect.ClassTag[A])Array[A]
scala> createArr(1,2,3)
res78: Array[Int] = Array(1, 2, 3)
scala> createArr("a","b","c")
res79: Array[String] = Array(a, b, c)
ClassTag
provides only the information needed to create types at runtime (which are type erased):
scala> classTag[Int]
res99: scala.reflect.ClassTag[Int] = ClassTag[int]
scala> classTag[Int].runtimeClass
res100: Class[_] = int
scala> classTag[Int].newArray(3)
res101: Array[Int] = Array(0, 0, 0)
scala> classTag[List[Int]]
res104: scala.reflect.ClassTag[List[Int]] =↩
ClassTag[class scala.collection.immutable.List]
As one can see above, they don't care about type erasure, therefore if one wants "full" types TypeTag
should be used:
scala> typeTag[List[Int]]
res105: reflect.runtime.universe.TypeTag[List[Int]] = TypeTag[scala.List[Int]]
scala> typeTag[List[Int]].tpe
res107: reflect.runtime.universe.Type = scala.List[Int]
scala> typeOf[List[Int]]
res108: reflect.runtime.universe.Type = scala.List[Int]
scala> res107 =:= res108
res109: Boolean = true
As one can see, method tpe
of TypeTag
results in a full Type
, which is the same we get when typeOf
is called. Of course, it is possible to use both, ClassTag
and TypeTag
:
scala> def m[A : ClassTag : TypeTag] = (classTag[A], typeTag[A])
m: [A](implicit evidence$1: scala.reflect.ClassTag[A],↩
implicit evidence$2: reflect.runtime.universe.TypeTag[A])↩
(scala.reflect.ClassTag[A], reflect.runtime.universe.TypeTag[A])
scala> m[List[Int]]
res36: (scala.reflect.ClassTag[List[Int]],↩
reflect.runtime.universe.TypeTag[List[Int]]) =↩
(scala.collection.immutable.List,TypeTag[scala.List[Int]])
The remaining question now is what is the sense of WeakTypeTag
? In short, TypeTag
represents a concrete type (this means it only allows fully instantiated types) whereas WeakTypeTag
just allows any type. Most of the time one does not care which is what (which means TypeTag
should be used), but for example, when macros are used which should work with generic types they are needed:
object Macro {
import language.experimental.macros
import scala.reflect.macros.Context
def anymacro[A](expr: A): String = macro __anymacro[A]
def __anymacro[A : c.WeakTypeTag](c: Context)(expr: c.Expr[A]): c.Expr[A] = {
// to get a Type for A the c.WeakTypeTag context bound must be added
val aType = implicitly[c.WeakTypeTag[A]].tpe
???
}
}
If one replaces WeakTypeTag
with TypeTag
an error is thrown:
<console>:17: error: macro implementation has wrong shape:
required: (c: scala.reflect.macros.Context)(expr: c.Expr[A]): c.Expr[String]
found : (c: scala.reflect.macros.Context)(expr: c.Expr[A])(implicit evidence$1: c.TypeTag[A]): c.Expr[A]
macro implementations cannot have implicit parameters other than WeakTypeTag evidences
def anymacro[A](expr: A): String = macro __anymacro[A]
^
For a more detailed explanation about the differences between TypeTag
and WeakTypeTag
see this question: Scala Macros: “cannot create TypeTag from a type T having unresolved type parameters”
The official documentation site of Scala also contains a guide for Reflection.