My web application uses sessions to store information about the user once they\'ve logged in, and to maintain that information as they travel from page to page within the ap
Security Notice: Basing the cookie off an MD5 hash of deterministic data is a bad idea; it's better to use a random token derived from a CSPRNG. See ircmaxell's answer to this question for a more secure approach.
Usually I do something like this:
Off course you can use different cookie names etc. also you can change the content of the cookie a bit, just make sure it isn't to easily created. You can for example also create a user_salt when the user is created and also put that in the cookie.
Also you could use sha1 instead of md5 (or pretty much any algorithm)
OK, let me put this bluntly: if you're putting user data, or anything derived from user data into a cookie for this purpose, you're doing something wrong.
There. I said it. Now we can move on to the actual answer.
What's wrong with hashing user data, you ask? Well, it comes down to exposure surface and security through obscurity.
Imagine for a second that you're an attacker. You see a cryptographic cookie set for the remember-me on your session. It's 32 characters wide. Gee. That may be an MD5...
Let's also imagine for a second that they know the algorithm that you used. For example:
md5(salt+username+ip+salt)
Now, all an attacker needs to do is brute force the "salt" (which isn't really a salt, but more on that later), and he can now generate all the fake tokens he wants with any username for his IP address! But brute-forcing a salt is hard, right? Absolutely. But modern day GPUs are exceedingly good at it. And unless you use sufficient randomness in it (make it large enough), it's going to fall quickly, and with it the keys to your castle.
In short, the only thing protecting you is the salt, which isn't really protecting you as much as you think.
But Wait!
All of that was predicated that the attacker knows the algorithm! If it's secret and confusing, then you're safe, right? WRONG. That line of thinking has a name: Security Through Obscurity, which should NEVER be relied upon.
The Better Way
The better way is to never let a user's information leave the server, except for the id.
When the user logs in, generate a large (128 to 256 bit) random token. Add that to a database table which maps the token to the userid, and then send it to the client in the cookie.
What if the attacker guesses the random token of another user?
Well, let's do some math here. We're generating a 128 bit random token. That means that there are:
possibilities = 2^128
possibilities = 3.4 * 10^38
Now, to show how absurdly large that number is, let's imagine every server on the internet (let's say 50,000,000 today) trying to brute-force that number at a rate of 1,000,000,000 per second each. In reality your servers would melt under such load, but let's play this out.
guesses_per_second = servers * guesses
guesses_per_second = 50,000,000 * 1,000,000,000
guesses_per_second = 50,000,000,000,000,000
So 50 quadrillion guesses per second. That's fast! Right?
time_to_guess = possibilities / guesses_per_second
time_to_guess = 3.4e38 / 50,000,000,000,000,000
time_to_guess = 6,800,000,000,000,000,000,000
So 6.8 sextillion seconds...
Let's try to bring that down to more friendly numbers.
215,626,585,489,599 years
Or even better:
47917 times the age of the universe
Yes, that's 47917 times the age of the universe...
Basically, it's not going to be cracked.
So to sum up:
The better approach that I recommend is to store the cookie with three parts.
function onLogin($user) {
$token = GenerateRandomToken(); // generate a token, should be 128 - 256 bit
storeTokenForUser($user, $token);
$cookie = $user . ':' . $token;
$mac = hash_hmac('sha256', $cookie, SECRET_KEY);
$cookie .= ':' . $mac;
setcookie('rememberme', $cookie);
}
Then, to validate:
function rememberMe() {
$cookie = isset($_COOKIE['rememberme']) ? $_COOKIE['rememberme'] : '';
if ($cookie) {
list ($user, $token, $mac) = explode(':', $cookie);
if (!hash_equals(hash_hmac('sha256', $user . ':' . $token, SECRET_KEY), $mac)) {
return false;
}
$usertoken = fetchTokenByUserName($user);
if (hash_equals($usertoken, $token)) {
logUserIn($user);
}
}
}
Note: Do not use the token or combination of user and token to lookup a record in your database. Always be sure to fetch a record based on the user and use a timing-safe comparison function to compare the fetched token afterwards. More about timing attacks.
Now, it's very important that the SECRET_KEY
be a cryptographic secret (generated by something like /dev/urandom
and/or derived from a high-entropy input). Also, GenerateRandomToken()
needs to be a strong random source (mt_rand()
is not nearly strong enough. Use a library, such as RandomLib or random_compat, or mcrypt_create_iv()
with DEV_URANDOM
)...
The hash_equals() is to prevent timing attacks. If you use a PHP version below PHP 5.6 the function hash_equals() is not supported. In this case you can replace hash_equals() with the timingSafeCompare function:
/**
* A timing safe equals comparison
*
* To prevent leaking length information, it is important
* that user input is always used as the second parameter.
*
* @param string $safe The internal (safe) value to be checked
* @param string $user The user submitted (unsafe) value
*
* @return boolean True if the two strings are identical.
*/
function timingSafeCompare($safe, $user) {
if (function_exists('hash_equals')) {
return hash_equals($safe, $user); // PHP 5.6
}
// Prevent issues if string length is 0
$safe .= chr(0);
$user .= chr(0);
// mbstring.func_overload can make strlen() return invalid numbers
// when operating on raw binary strings; force an 8bit charset here:
if (function_exists('mb_strlen')) {
$safeLen = mb_strlen($safe, '8bit');
$userLen = mb_strlen($user, '8bit');
} else {
$safeLen = strlen($safe);
$userLen = strlen($user);
}
// Set the result to the difference between the lengths
$result = $safeLen - $userLen;
// Note that we ALWAYS iterate over the user-supplied length
// This is to prevent leaking length information
for ($i = 0; $i < $userLen; $i++) {
// Using % here is a trick to prevent notices
// It's safe, since if the lengths are different
// $result is already non-0
$result |= (ord($safe[$i % $safeLen]) ^ ord($user[$i]));
}
// They are only identical strings if $result is exactly 0...
return $result === 0;
}
I read all the answers and still found it difficult to extract what I was supposed to do. If a picture is worth 1k words I hope this helps others implement a secure persistent storage based on Barry Jaspan's Improved Persistent Login Cookie Best Practice
If you have questions, feedback, or suggestions, I will try to update the diagram to reflect for the newbie trying to implement a secure persistent login.
Introduction
Your title “Keep Me Logged In” - the best approach make it difficult for me to know where to start because if you are looking at best approach then you would have to consideration the following :
Cookies
Cookies are vulnerable, Between common browser cookie-theft vulnerabilities and cross-site scripting attacks we must accept that cookies are not safe. To help improve security you must note that php
setcookies
has additional functionality such as
bool setcookie ( string $name [, string $value [, int $expire = 0 [, string $path [, string $domain [, bool $secure = false [, bool $httponly = false ]]]]]] )
Definitions
Simple Approach
A simple solution would be :
The above case study summarizes all example given on this page but they disadvantages is that
Better Solution
A better solution would be
Example Code
// Set privateKey
// This should be saved securely
$key = 'fc4d57ed55a78de1a7b31e711866ef5a2848442349f52cd470008f6d30d47282';
$key = pack("H*", $key); // They key is used in binary form
// Am Using Memecahe as Sample Database
$db = new Memcache();
$db->addserver("127.0.0.1");
try {
// Start Remember Me
$rememberMe = new RememberMe($key);
$rememberMe->setDB($db); // set example database
// Check if remember me is present
if ($data = $rememberMe->auth()) {
printf("Returning User %s\n", $data['user']);
// Limit Acces Level
// Disable Change of password and private information etc
} else {
// Sample user
$user = "baba";
// Do normal login
$rememberMe->remember($user);
printf("New Account %s\n", $user);
}
} catch (Exception $e) {
printf("#Error %s\n", $e->getMessage());
}
Class Used
class RememberMe {
private $key = null;
private $db;
function __construct($privatekey) {
$this->key = $privatekey;
}
public function setDB($db) {
$this->db = $db;
}
public function auth() {
// Check if remeber me cookie is present
if (! isset($_COOKIE["auto"]) || empty($_COOKIE["auto"])) {
return false;
}
// Decode cookie value
if (! $cookie = @json_decode($_COOKIE["auto"], true)) {
return false;
}
// Check all parameters
if (! (isset($cookie['user']) || isset($cookie['token']) || isset($cookie['signature']))) {
return false;
}
$var = $cookie['user'] . $cookie['token'];
// Check Signature
if (! $this->verify($var, $cookie['signature'])) {
throw new Exception("Cokies has been tampared with");
}
// Check Database
$info = $this->db->get($cookie['user']);
if (! $info) {
return false; // User must have deleted accout
}
// Check User Data
if (! $info = json_decode($info, true)) {
throw new Exception("User Data corrupted");
}
// Verify Token
if ($info['token'] !== $cookie['token']) {
throw new Exception("System Hijacked or User use another browser");
}
/**
* Important
* To make sure the cookie is always change
* reset the Token information
*/
$this->remember($info['user']);
return $info;
}
public function remember($user) {
$cookie = [
"user" => $user,
"token" => $this->getRand(64),
"signature" => null
];
$cookie['signature'] = $this->hash($cookie['user'] . $cookie['token']);
$encoded = json_encode($cookie);
// Add User to database
$this->db->set($user, $encoded);
/**
* Set Cookies
* In production enviroment Use
* setcookie("auto", $encoded, time() + $expiration, "/~root/",
* "example.com", 1, 1);
*/
setcookie("auto", $encoded); // Sample
}
public function verify($data, $hash) {
$rand = substr($hash, 0, 4);
return $this->hash($data, $rand) === $hash;
}
private function hash($value, $rand = null) {
$rand = $rand === null ? $this->getRand(4) : $rand;
return $rand . bin2hex(hash_hmac('sha256', $value . $rand, $this->key, true));
}
private function getRand($length) {
switch (true) {
case function_exists("mcrypt_create_iv") :
$r = mcrypt_create_iv($length, MCRYPT_DEV_URANDOM);
break;
case function_exists("openssl_random_pseudo_bytes") :
$r = openssl_random_pseudo_bytes($length);
break;
case is_readable('/dev/urandom') : // deceze
$r = file_get_contents('/dev/urandom', false, null, 0, $length);
break;
default :
$i = 0;
$r = "";
while($i ++ < $length) {
$r .= chr(mt_rand(0, 255));
}
break;
}
return substr(bin2hex($r), 0, $length);
}
}
Testing in Firefox & Chrome
Advantage
Disadvantage
Quick Fix
Multiple Cookie Approach
When an attacker is about to steal cookies the only focus it on a particular website or domain eg. example.com
But really you can authenticate a user from 2 different domains (example.com & fakeaddsite.com) and make it look like "Advert Cookie"
Some people might wonder how can you use 2 different cookies ? Well its possible, imagine example.com = localhost
and fakeaddsite.com = 192.168.1.120
. If you inspect the cookies it would look like this
From the image above
192.168.1.120
HTTP_REFERER
REMOTE_ADDR
Advantage
Disadvantage
Improvement
ajax
I would recommend the approach mentioned by Stefan (i.e. follow the guidelines in Improved Persistent Login Cookie Best Practice) and also recommend that you make sure your cookies are HttpOnly cookies so they are not accessible to, potentially malicious, JavaScript.
Generate a hash, maybe with a secret only you know, then store it in your DB so it can be associated with the user. Should work quite well.