Question is simple, how would I implement a function taking a variable number of arguments (alike the variadic template), however where all arguments have the same type, say
If you don't want to use brace-based initializer_list
/vector
and want to keep the arguments separate in form of argument pack, then below solution checks it at compile time using recursive static_assert
s:
#include<type_traits>
template<typename T1, typename T2, typename... Error>
struct is_same : std::false_type {};
template<typename T, typename... Checking>
struct is_same<T, T, Checking...> : is_same<T, Checking...> {};
template<typename T>
struct is_same<T,T> : std::true_type {};
template<typename... LeftMost>
void func (LeftMost&&... args)
{
static_assert(is_same<typename std::decay<LeftMost>::type...>::value,
"All types are not same as 'LeftMost'");
// ...
}
int main ()
{
int var = 2;
func(1,var,3,4,5); // ok
func(1,2,3,4.0,5); // error due to `static_assert` failure
}
Actually this solution would check all the arguments with respect to the first argument. Suppose it was double
then everything would be checked against double
.
A possible solution is to make the parameter type a container that can be initialized by a brace initializer list, such as std::initializer_list<int> or std::vector<int>. For example:
#include <iostream>
#include <initializer_list>
void func(std::initializer_list<int> a_args)
{
for (auto i: a_args) std::cout << i << '\n';
}
int main()
{
func({4, 7});
func({4, 7, 12, 14});
}
Here's a version that removes the function from the overload set, instead of giving a static_assert. This is allows you to provide other overloads of the function that could be used when the types aren't all the same, rather than a fatal static_assert that can't be avoided.
#include <type_traits>
template<typename... T>
struct all_same : std::false_type { };
template<>
struct all_same<> : std::true_type { };
template<typename T>
struct all_same<T> : std::true_type { };
template<typename T, typename... Ts>
struct all_same<T, T, Ts...> : all_same<T, Ts...> { };
template<typename... T>
typename std::enable_if<all_same<T...>::value, void>::type
func(T...)
{ }
If you want to support perfect forwarding you probably want to decay the types before checking them, so that the function will accept a mix of lvalue and rvalue arguments as long as they have the same type:
template<typename... T>
typename std::enable_if<all_same<typename std::decay<T>::type...>::value, void>::type
func(T&&...)
{ }
Alternatively, if you have a general purpose trait for testing the logical conjunction you can do it using std::is_same
instead of writing your own all_same
:
template<typename T, typename... Ts>
typename std::enable_if<and_<is_same<T, Ts>...>::value, void>::type
func(T&&, Ts&&...)
{ }
Because this requires at least one argument you'd also need another overload to support the zero-argument case:
void func() { }
The and_
helper can be defined like so:
template<typename...>
struct and_;
template<>
struct and_<>
: public std::true_type
{ };
template<typename B1>
struct and_<B1>
: public B1
{ };
template<typename B1, typename B2>
struct and_<B1, B2>
: public std::conditional<B1::value, B2, B1>::type
{ };
template<typename B1, typename B2, typename B3, typename... Bn>
struct and_<B1, B2, B3, Bn...>
: public std::conditional<B1::value, and_<B2, B3, Bn...>, B1>::type
{ };
I think you can do this by specifying a concrete type when chewing your arguments out of the argument pack. Something like:
class MyClass{};
class MyOtherClass{};
void func()
{
// do something
}
template< typename... Arguments >
void func( MyClass arg, Arguments ... args )
{
// do something with arg
func( args... );
// do something more with arg
}
void main()
{
MyClass a, b, c;
MyOtherClass d;
int i;
float f;
func( a, b, c ); // compiles fine
func( i, f, d ); // cannot convert
}
In the generic case void func( MyClass arg, Arguments ... args )
would become void func( arg, Arguments ... args )
with a template type T.
Because I don't think I saw this solution, you could write a specific function for every type (in your case, just int
) then a forwarding function taking variadic argument types.
Write each specific case:
then for each specific case:
// only int in your case
void func(int i){
std::cout << "int i = " << i << std::endl;
}
Then your forwarding function like this:
template<typename Arg0, typename Arg1 typename ... Args>
void func(Arg0 &&arg0, Arg1 &&arg1, Args &&... args){
func(std::forward<Arg0>(arg0));
func(std::forward<Arg1>(arg1), std::forward<Args>(args)...);
}
This is good because it is expandable for when you want to accept maybe another type too.
Used like this:
int main(){
func(1, 2, 3, 4); // works fine
func(1.0f, 2.0f, 3.0f, 4.0f); // compile error, no func(float)
}
@Skeen How about this?
template <typename T>
void func_1(std::initializer_list<T>&& a) {
// do something
}
template <typename... T>
void func(T&&... a) {
func_1({std::forward<T>(a)...});
}
int main() {
func(1, 2, 3);
// func(1, 2, 3, 4.0); // OK doesn't compile
}