How to get bounds in degrees of google static map which has been returned, for example, for following request
http://maps.googleapis.com/maps/api/staticmap?c
As I know, full Earth map is 256x256 image.
Yes.
This means that n vertical pixels contain x degrees, but n horizontal pixels contain 2x degrees. Right?
No. One pixel will represent varying amounts of latitude depending on the latitude. One pixel at the Equator represents less latitude than one pixel near the poles.
The corners of the map will depend on center, zoom level and map size, and you'd need to use the Mercator projection to calculate them. If you don't want to load the full API, here's a MercatorProjection object:
var MERCATOR_RANGE = 256;
function bound(value, opt_min, opt_max) {
if (opt_min != null) value = Math.max(value, opt_min);
if (opt_max != null) value = Math.min(value, opt_max);
return value;
}
function degreesToRadians(deg) {
return deg * (Math.PI / 180);
}
function radiansToDegrees(rad) {
return rad / (Math.PI / 180);
}
function MercatorProjection() {
this.pixelOrigin_ = new google.maps.Point( MERCATOR_RANGE / 2, MERCATOR_RANGE / 2);
this.pixelsPerLonDegree_ = MERCATOR_RANGE / 360;
this.pixelsPerLonRadian_ = MERCATOR_RANGE / (2 * Math.PI);
};
MercatorProjection.prototype.fromLatLngToPoint = function(latLng, opt_point) {
var me = this;
var point = opt_point || new google.maps.Point(0, 0);
var origin = me.pixelOrigin_;
point.x = origin.x + latLng.lng() * me.pixelsPerLonDegree_;
// NOTE(appleton): Truncating to 0.9999 effectively limits latitude to
// 89.189. This is about a third of a tile past the edge of the world tile.
var siny = bound(Math.sin(degreesToRadians(latLng.lat())), -0.9999, 0.9999);
point.y = origin.y + 0.5 * Math.log((1 + siny) / (1 - siny)) * -me.pixelsPerLonRadian_;
return point;
};
MercatorProjection.prototype.fromPointToLatLng = function(point) {
var me = this;
var origin = me.pixelOrigin_;
var lng = (point.x - origin.x) / me.pixelsPerLonDegree_;
var latRadians = (point.y - origin.y) / -me.pixelsPerLonRadian_;
var lat = radiansToDegrees(2 * Math.atan(Math.exp(latRadians)) - Math.PI / 2);
return new google.maps.LatLng(lat, lng);
};
//pixelCoordinate = worldCoordinate * Math.pow(2,zoomLevel)
You can save that to a separate file, for example "MercatorProjection.js", and then include it in your application.
<script src="MercatorProjection.js"></script>
With the above file loaded, the following function calculates the SW and NE corners of a map of a given size and at a given zoom.
function getCorners(center,zoom,mapWidth,mapHeight){
var scale = Math.pow(2,zoom);
var centerPx = proj.fromLatLngToPoint(center);
var SWPoint = {x: (centerPx.x -(mapWidth/2)/ scale) , y: (centerPx.y + (mapHeight/2)/ scale)};
var SWLatLon = proj.fromPointToLatLng(SWPoint);
alert('SW: ' + SWLatLon);
var NEPoint = {x: (centerPx.x +(mapWidth/2)/ scale) , y: (centerPx.y - (mapHeight/2)/ scale)};
var NELatLon = proj.fromPointToLatLng(NEPoint);
alert(' NE: '+ NELatLon);
}
and you'd call it like this:
var proj = new MercatorProjection();
var G = google.maps;
var centerPoint = new G.LatLng(49.141404, -121.960988);
var zoom = 10;
getCorners(centerPoint,zoom,640,640);
Thanks Marcelo for your answer. It has been quite helpful. In case anyone would be interested, here the Python version of the code (a rough translation of the PHP code, probably not as pythonic as it could be):
from __future__ import division
import math
MERCATOR_RANGE = 256
def bound(value, opt_min, opt_max):
if (opt_min != None):
value = max(value, opt_min)
if (opt_max != None):
value = min(value, opt_max)
return value
def degreesToRadians(deg) :
return deg * (math.pi / 180)
def radiansToDegrees(rad) :
return rad / (math.pi / 180)
class G_Point :
def __init__(self,x=0, y=0):
self.x = x
self.y = y
class G_LatLng :
def __init__(self,lt, ln):
self.lat = lt
self.lng = ln
class MercatorProjection :
def __init__(self) :
self.pixelOrigin_ = G_Point( MERCATOR_RANGE / 2, MERCATOR_RANGE / 2)
self.pixelsPerLonDegree_ = MERCATOR_RANGE / 360
self.pixelsPerLonRadian_ = MERCATOR_RANGE / (2 * math.pi)
def fromLatLngToPoint(self, latLng, opt_point=None) :
point = opt_point if opt_point is not None else G_Point(0,0)
origin = self.pixelOrigin_
point.x = origin.x + latLng.lng * self.pixelsPerLonDegree_
# NOTE(appleton): Truncating to 0.9999 effectively limits latitude to
# 89.189. This is about a third of a tile past the edge of the world tile.
siny = bound(math.sin(degreesToRadians(latLng.lat)), -0.9999, 0.9999)
point.y = origin.y + 0.5 * math.log((1 + siny) / (1 - siny)) * - self.pixelsPerLonRadian_
return point
def fromPointToLatLng(self,point) :
origin = self.pixelOrigin_
lng = (point.x - origin.x) / self.pixelsPerLonDegree_
latRadians = (point.y - origin.y) / -self.pixelsPerLonRadian_
lat = radiansToDegrees(2 * math.atan(math.exp(latRadians)) - math.pi / 2)
return G_LatLng(lat, lng)
#pixelCoordinate = worldCoordinate * pow(2,zoomLevel)
def getCorners(center, zoom, mapWidth, mapHeight):
scale = 2**zoom
proj = MercatorProjection()
centerPx = proj.fromLatLngToPoint(center)
SWPoint = G_Point(centerPx.x-(mapWidth/2)/scale, centerPx.y+(mapHeight/2)/scale)
SWLatLon = proj.fromPointToLatLng(SWPoint)
NEPoint = G_Point(centerPx.x+(mapWidth/2)/scale, centerPx.y-(mapHeight/2)/scale)
NELatLon = proj.fromPointToLatLng(NEPoint)
return {
'N' : NELatLon.lat,
'E' : NELatLon.lng,
'S' : SWLatLon.lat,
'W' : SWLatLon.lng,
}
Usage :
>>> import MercatorProjection
>>> centerLat = 49.141404
>>> centerLon = -121.960988
>>> zoom = 10
>>> mapWidth = 640
>>> mapHeight = 640
>>> centerPoint = MercatorProjection.G_LatLng(centerLat, centerLon)
>>> corners = MercatorProjection.getCorners(centerPoint, zoom, mapWidth, mapHeight)
>>> corners
{'E': -65.710988,
'N': 74.11120692972199,
'S': 0.333879313530149,
'W': -178.210988}
>>> mapURL = "http://maps.googleapis.com/maps/api/staticmap?center=%f,%f&zoom=%d&size=%dx%d&scale=2&maptype=roadmap&sensor=false"%(centerLat,centerLon,zoom,mapWidth,mapHeight)
>>> mapURL
http://maps.googleapis.com/maps/api/staticmap?center=49.141404,-121.960988&zoom=10&size=640x640&scale=2&maptype=roadmap&sensor=false'
Here is a line by line translation of Marcelo's code in PHP, which can probably be cleaned up a bit. Works great! Thanks to Marcelo for doing the hard part.
define("MERCATOR_RANGE", 256);
function degreesToRadians($deg) {
return $deg * (M_PI / 180);
}
function radiansToDegrees($rad) {
return $rad / (M_PI / 180);
}
function bound($value, $opt_min, $opt_max) {
if ($opt_min != null) $value = max($value, $opt_min);
if ($opt_max != null) $value = min($value, $opt_max);
return $value;
}
class G_Point {
public $x,$y;
function G_Point($x=0, $y=0){
$this->x = $x;
$this->y = $y;
}
}
class G_LatLng {
public $lat,$lng;
function G_LatLng($lt, $ln){
$this->lat = $lt;
$this->lng = $ln;
}
}
class MercatorProjection {
private $pixelOrigin_, $pixelsPerLonDegree_, $pixelsPerLonRadian_;
function MercatorProjection() {
$this->pixelOrigin_ = new G_Point( MERCATOR_RANGE / 2, MERCATOR_RANGE / 2);
$this->pixelsPerLonDegree_ = MERCATOR_RANGE / 360;
$this->pixelsPerLonRadian_ = MERCATOR_RANGE / (2 * M_PI);
}
public function fromLatLngToPoint($latLng, $opt_point=null) {
$me = $this;
$point = $opt_point ? $opt_point : new G_Point(0,0);
$origin = $me->pixelOrigin_;
$point->x = $origin->x + $latLng->lng * $me->pixelsPerLonDegree_;
// NOTE(appleton): Truncating to 0.9999 effectively limits latitude to
// 89.189. This is about a third of a tile past the edge of the world tile.
$siny = bound(sin(degreesToRadians($latLng->lat)), -0.9999, 0.9999);
$point->y = $origin->y + 0.5 * log((1 + $siny) / (1 - $siny)) * -$me->pixelsPerLonRadian_;
return $point;
}
public function fromPointToLatLng($point) {
$me = $this;
$origin = $me->pixelOrigin_;
$lng = ($point->x - $origin->x) / $me->pixelsPerLonDegree_;
$latRadians = ($point->y - $origin->y) / -$me->pixelsPerLonRadian_;
$lat = radiansToDegrees(2 * atan(exp($latRadians)) - M_PI / 2);
return new G_LatLng($lat, $lng);
}
//pixelCoordinate = worldCoordinate * pow(2,zoomLevel)
}
function getCorners($center, $zoom, $mapWidth, $mapHeight){
$scale = pow(2, $zoom);
$proj = new MercatorProjection();
$centerPx = $proj->fromLatLngToPoint($center);
$SWPoint = new G_Point($centerPx->x-($mapWidth/2)/$scale, $centerPx->y+($mapHeight/2)/$scale);
$SWLatLon = $proj->fromPointToLatLng($SWPoint);
$NEPoint = new G_Point($centerPx->x+($mapWidth/2)/$scale, $centerPx->y-($mapHeight/2)/$scale);
$NELatLon = $proj->fromPointToLatLng($NEPoint);
return array(
'N' => $NELatLon->lat,
'E' => $NELatLon->lng,
'S' => $SWLatLon->lat,
'W' => $SWLatLon->lng,
);
}
Usage:
$centerLat = 49.141404;
$centerLon = -121.960988;
$zoom = 10;
$mapWidth = 640;
$mapHeight = 640;
$centerPoint = new G_LatLng($centerLat, $centerLon);
$corners = getCorners($centerPoint, $zoom, $mapWidth, $mapHeight);
$mapURL = "http://maps.googleapis.com/maps/api/staticmap?center={$centerLat},{$centerLon}&zoom={$zoom}&size={$mapWidth}x{$mapHeight}&scale=2&maptype=roadmap&sensor=false";
For big zoom factors (>=8), where non-uniformity of map scale on y axis can be neglected, there is much easier method, where we just takes into accout 1/cos(latitude) correction for pixels/(degrees of latitude) resolution. Initial resolution for zoom=0 is 256 pixels per 360 degrees both for x and y at 0 lattitude.
def get_static_map_bounds(lat, lng, zoom, sx, sy):
# lat, lng - center
# sx, sy - map size in pixels
# 256 pixels - initial map size for zoom factor 0
sz = 256 * 2 ** zoom
#resolution in degrees per pixel
res_lat = cos(lat * pi / 180.) * 360. / sz
res_lng = 360./sz
d_lat = res_lat * sy / 2
d_lng = res_lng * sx / 2
return ((lat-d_lat, lng-d_lng), (lat+d_lat, lng+d_lng))
Here is translation to Delphi/Pascal with some optimizations to correspond more strict Pascal language and memory management.
unit Mercator.Google.Maps;
interface
uses System.Math;
type TG_Point = class(TObject)
private
Fx: integer;
Fy: integer;
public
property x: integer read Fx write Fx;
property y: integer read Fy write Fy;
constructor Create(Ax: integer = 0; Ay: integer = 0);
end;
type TG_LatLng = class(TObject)
private
FLat: double;
FLng: double;
public
property Lat: double read FLat write FLat;
property Lng: double read FLng write FLng;
constructor Create(ALat: double; ALng: double);
end;
type TMercatorProjection = class(TObject)
private
pixelOrigin_: TG_Point;
pixelsPerLonDegree_, pixelsPerLonRadian_: double;
function degreesToRadians(deg: double): double;
function radiansToDegrees(rad: double): double;
function bound(value: double; opt_min: double; opt_max: double): double;
public
constructor Create;
procedure fromLatLngToPoint(latLng: TG_LatLng; var point: TG_Point);
procedure fromPointToLatLng(point: TG_point; var latLng: TG_LatLng);
procedure getCorners(center: TG_LatLng; zoom: integer; mapWidth: integer; mapHeight: integer;
var NELatLon: TG_LatLng; var SWLatLon: TG_LatLng);
end;
implementation
const MERCATOR_RANGE = 256;
constructor TG_Point.Create(Ax: Integer = 0; Ay: Integer = 0);
begin
inherited Create;
Fx := Ax;
Fy := Ay
end;
// **************
constructor TG_LatLng.Create(ALat: double; ALng: double);
begin
inherited Create;
FLat := ALat;
FLng := ALng
end;
// **************
constructor TMercatorProjection.Create;
begin
inherited Create;
pixelOrigin_ := TG_Point.Create( Round(MERCATOR_RANGE / 2), Round(MERCATOR_RANGE / 2));
pixelsPerLonDegree_ := MERCATOR_RANGE / 360;
pixelsPerLonRadian_ := MERCATOR_RANGE / (2 * PI);
end;
// Translate degrees to radians
function TMercatorProjection.degreesToRadians(deg: double): double;
begin
Result := deg * (PI / 180);
end;
// Translate radians to degrees
function TMercatorProjection.radiansToDegrees(rad: double): double;
begin
Result := rad / (PI / 180);
end;
// keep value insid defined bounds
function TMercatorProjection.bound(value: double; opt_min: double; opt_max: double): double;
begin
if Value < opt_min then Result := opt_min
else if Value > opt_max then Result := opt_max
else Result := Value;
end;
procedure TMercatorProjection.fromLatLngToPoint(latLng: TG_LatLng; var point: TG_Point);
var
siny: double;
begin
if Assigned(point) then
begin
point.x := Round(pixelOrigin_.x + latLng.lng * pixelsPerLonDegree_);
// NOTE(appleton): Truncating to 0.9999 effectively limits latitude to
// 89.189. This is about a third of a tile past the edge of the world tile.
siny := bound(sin(degreesToRadians(latLng.lat)), -0.9999, 0.9999);
point.y := Round(pixelOrigin_.y + 0.5 * ln((1 + siny) / (1 - siny)) * -pixelsPerLonRadian_);
end;
end;
procedure TMercatorProjection.fromPointToLatLng(point: TG_point; var latLng: TG_LatLng);
var
latRadians: double;
begin
if Assigned(latLng) then
begin
latLng.lng := (point.x - pixelOrigin_.x) / pixelsPerLonDegree_;
latRadians := (point.y - pixelOrigin_.y) / -pixelsPerLonRadian_;
latLng.lat := radiansToDegrees(2 * arctan(exp(latRadians)) - PI / 2);
end;
end;
//pixelCoordinate = worldCoordinate * pow(2,zoomLevel)
procedure TMercatorProjection.getCorners(center: TG_LatLng; zoom: integer; mapWidth: integer; mapHeight: integer;
var NELatLon: TG_LatLng; var SWLatLon: TG_LatLng);
var
scale: double;
centerPx, SWPoint, NEPoint: TG_Point;
begin
scale := power(2, zoom);
centerPx := TG_Point.Create(0, 0);
try
fromLatLngToPoint(center, centerPx);
SWPoint := TG_Point.Create(Round(centerPx.x-(mapWidth/2)/scale), Round(centerPx.y+(mapHeight/2)/scale));
NEPoint := TG_Point.Create(Round(centerPx.x+(mapWidth/2)/scale), Round(centerPx.y-(mapHeight/2)/scale));
try
fromPointToLatLng(SWPoint, SWLatLon);
fromPointToLatLng(NEPoint, NELatLon);
finally
SWPoint.Free;
NEPoint.Free;
end;
finally
centerPx.Free;
end;
end;
end.
Usage example:
with TMercatorProjection.Create do
try
CLatLon := TG_LatLng.Create(Latitude, Longitude);
SWLatLon := TG_LatLng.Create(0,0);
NELatLon := TG_LatLng.Create(0,0);
try
getCorners(CLatLon, Zoom,
MapWidth, MapHeight,
SWLatLon, NELatLon);
finally
ShowMessage('SWLat='+FloatToStr(SWLatLon.Lat)+' | SWLon='+FloatToStr(SWLatLon.Lng));
ShowMessage('NELat='+FloatToStr(NELatLon.Lat)+' | NELon='+FloatToStr(NELatLon.Lng));
SWLatLon.Free;
NELatLon.Free;
CLatLon.Free;
end;
finally
Free;
end;