Say I have the following R data.frame ZZZ
:
( ZZZ <- structure(list(n = c(1, 2, NA), m = c(6, NA, NA), o = c(7, 8,
8)), .Names = c(\
colSums(!is.na(x))
Vectorisation ftw.
For getting total no of missing values use sum(is.na(x)) and for colum-wise use colSums(is.na(x)) where x is varible that contain dataset
If you only want the sum total of NAs overall, then sum() with !is.na() will do it:
ZZZ <- data.frame(n = c(1, 2, NA), m = c(6, NA, NA), o = c(7, 8, 8))
sum(!is.na(ZZZ))
Try this:
# define "demo" dataset
ZZZ <- data.frame(n=c(1,2,NA),m=c(6,NA,NA),o=c(7,8,8))
# apply the counting function per columns
apply(ZZZ, 2, function(x) length(which(!is.na(x))))
Having run:
> apply(ZZZ, 2, function(x) length(which(!is.na(x))))
n m o
2 1 3
If you really insist on returning a vector, you might use as.vector
, e.g. by defining this function:
nonNAs <- function(x) {
as.vector(apply(x, 2, function(x) length(which(!is.na(x)))))
}
You could simply run nonNAs(ZZZ)
:
> nonNAs(ZZZ)
[1] 2 1 3