I am trying to remove a certain color from my image however it\'s not working as well as I\'d hoped. I tried to do the same thing as seen here Using PIL to make all white pi
The best way to do it is to use the "color to alpha" algorithm used in Gimp to replace a color. It will work perfectly in your case. I reimplemented this algorithm using PIL for an open source python photo processor phatch. You can find the full implementation here. This a pure PIL implementation and it doesn't have other dependences. You can copy the function code and use it. Here is a sample using Gimp:
to
You can apply the color_to_alpha
function on the image using black as the color. Then paste the image on a different background color to do the replacement.
By the way, this implementation uses the ImageMath module in PIL. It is much more efficient than accessing pixels using getdata.
EDIT: Here is the full code:
from PIL import Image, ImageMath
def difference1(source, color):
"""When source is bigger than color"""
return (source - color) / (255.0 - color)
def difference2(source, color):
"""When color is bigger than source"""
return (color - source) / color
def color_to_alpha(image, color=None):
image = image.convert('RGBA')
width, height = image.size
color = map(float, color)
img_bands = [band.convert("F") for band in image.split()]
# Find the maximum difference rate between source and color. I had to use two
# difference functions because ImageMath.eval only evaluates the expression
# once.
alpha = ImageMath.eval(
"""float(
max(
max(
max(
difference1(red_band, cred_band),
difference1(green_band, cgreen_band)
),
difference1(blue_band, cblue_band)
),
max(
max(
difference2(red_band, cred_band),
difference2(green_band, cgreen_band)
),
difference2(blue_band, cblue_band)
)
)
)""",
difference1=difference1,
difference2=difference2,
red_band = img_bands[0],
green_band = img_bands[1],
blue_band = img_bands[2],
cred_band = color[0],
cgreen_band = color[1],
cblue_band = color[2]
)
# Calculate the new image colors after the removal of the selected color
new_bands = [
ImageMath.eval(
"convert((image - color) / alpha + color, 'L')",
image = img_bands[i],
color = color[i],
alpha = alpha
)
for i in xrange(3)
]
# Add the new alpha band
new_bands.append(ImageMath.eval(
"convert(alpha_band * alpha, 'L')",
alpha = alpha,
alpha_band = img_bands[3]
))
return Image.merge('RGBA', new_bands)
image = color_to_alpha(image, (0, 0, 0, 255))
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image.convert('RGB'), mask=image)
You'll need to represent the image as a 2-dimensional array. This means either making a list of lists of pixels, or viewing the 1-dimensional array as a 2d one with some clever math. Then, for each pixel that is targeted, you'll need to find all surrounding pixels. You could do this with a python generator thus:
def targets(x,y):
yield (x,y) # Center
yield (x+1,y) # Left
yield (x-1,y) # Right
yield (x,y+1) # Above
yield (x,y-1) # Below
yield (x+1,y+1) # Above and to the right
yield (x+1,y-1) # Below and to the right
yield (x-1,y+1) # Above and to the left
yield (x-1,y-1) # Below and to the left
So, you would use it like this:
for x in range(width):
for y in range(height):
px = pixels[x][y]
if px[0] == 255 and px[1] == 255 and px[2] == 255:
for i,j in targets(x,y):
newpixels[i][j] = replacementColor
Using numpy and PIL:
This loads the image into a numpy array of shape (W,H,3)
, where W
is the
width and H
is the height. The third axis of the array represents the 3 color
channels, R,G,B
.
import Image
import numpy as np
orig_color = (255,255,255)
replacement_color = (0,0,0)
img = Image.open(filename).convert('RGB')
data = np.array(img)
data[(data == orig_color).all(axis = -1)] = replacement_color
img2 = Image.fromarray(data, mode='RGB')
img2.show()
Since orig_color
is a tuple of length 3, and data
has
shape (W,H,3)
, NumPy
broadcasts
orig_color
to an array of shape (W,H,3)
to perform the comparison data ==
orig_color
. The result in a boolean array of shape (W,H,3)
.
(data == orig_color).all(axis = -1)
is a boolean array of shape (W,H)
which
is True wherever the RGB color in data
is original_color
.
#!/usr/bin/python
from PIL import Image
import sys
img = Image.open(sys.argv[1])
img = img.convert("RGBA")
pixdata = img.load()
# Clean the background noise, if color != white, then set to black.
# change with your color
for y in xrange(img.size[1]):
for x in xrange(img.size[0]):
if pixdata[x, y] == (255, 255, 255, 255):
pixdata[x, y] = (0, 0, 0, 255)
If the pixels are not easily identifiable e.g you say (r < 100 and g < 100 and b < 100) also doesn't match correctly the black region, it means you have lots of noise.
Best way would be to identify a region and fill it with color you want, you can identify the region manually or may be by edge detection e.g. http://bitecode.co.uk/2008/07/edge-detection-in-python/
or more sophisticated approach would be to use library like opencv (http://opencv.willowgarage.com/wiki/) to identify objects.
This is part of my code, the result would like: source
target
import os
import struct
from PIL import Image
def changePNGColor(sourceFile, fromRgb, toRgb, deltaRank = 10):
fromRgb = fromRgb.replace('#', '')
toRgb = toRgb.replace('#', '')
fromColor = struct.unpack('BBB', bytes.fromhex(fromRgb))
toColor = struct.unpack('BBB', bytes.fromhex(toRgb))
img = Image.open(sourceFile)
img = img.convert("RGBA")
pixdata = img.load()
for x in range(0, img.size[0]):
for y in range(0, img.size[1]):
rdelta = pixdata[x, y][0] - fromColor[0]
gdelta = pixdata[x, y][0] - fromColor[0]
bdelta = pixdata[x, y][0] - fromColor[0]
if abs(rdelta) <= deltaRank and abs(gdelta) <= deltaRank and abs(bdelta) <= deltaRank:
pixdata[x, y] = (toColor[0] + rdelta, toColor[1] + gdelta, toColor[2] + bdelta, pixdata[x, y][3])
img.save(os.path.dirname(sourceFile) + os.sep + "changeColor" + os.path.splitext(sourceFile)[1])
if __name__ == '__main__':
changePNGColor("./ok_1.png", "#000000", "#ff0000")