I recently read about decompilation of iOS apps and I\'m now really concerned about it. As stated in the following posts (#1 and #2) it is possible to decompile an iOS which
This is a problem that people have been chasing for years, and any sufficiently-motivated person with skills will be able to find ways to find out whatever information you don't want them to find out, if that information is ever stored on a device.
Without jailbreaking, it's possible to disassemble apps by using the purchased or downloaded binary. This is static inspection and is facilitated with standard disassembly tools. Although you need to have a tool which is good enough to add symbols from the linker and understand method calls sufficiently to be able to tease out what's going on. If you want to get a feel for how this works, check out hopper, it's a really good disassembly/reverse-engineering tool.
Specifically to your secure log in question, you have a bigger problem if you have a motivated attacker: system-based man-in-the-middle attacks. In this case, the attacker can shim out the networking code used by your system and see anything which is sent via standard networking. Therefore, you can't depend on being able to send any form of unencrypted data into a "secure" pipe at the OS or library level and expect it not to be seen. At a minimum you'll need to encrypt before getting the data into the pipe (i.e. you can't depend on sending any plain text to standard SSL libraries). You can compile your own set of SSL libraries and link them directly in to your App, which means you don't get any system performance and security enhancements over time, but you can manually upgrade your SSL libraries as necessary. You could also create your own encryption, but that's fraught with potential issues, since motivated hackers might find it easier to attack your wire protocol at that point (publicly-tested protocols like SSL are usually more secure than what you can throw together yourself, unless you are a particularly gifted developer with years of security/encryption experience).
However, all of this assumes that your attacker is sufficiently motivated. If you remove the low-hanging fruit, you may be able to prevent a casual hacker from making a simple attempt at figuring out your system. Some things to avoid:
serverkey.text
or a key stored in a plist with a name which contains key
are both classics)But, most important is creating systems where the keys (if any) stored in the application themselves are useless without information the user has to enter themselves (directly, or indirectly through systems such as OAUTH). The server should not trust the client for any important operation without having had some interaction with a user who can be trusted.
Apple's Keychain provides a good place to store authentication tokens, such as the ones retrieved during an OAUTH sequence. The API is a bit hard to work with, but the system is solid.
In the end, the problem is that no matter what you do, you're just upping the ante on the amount of work that it takes to defeat your measures. The attacker gets to control all of the important parts of the equation, so they will eventually defeat anything on the device. You are going to need to decide how much effort to put into securing the client, vs securing the server and monitoring for abuse. Since the attacker holds all of the cards on the device, your better approach is going to be methods that can be implemented on the server to enhance your goals.