Cartesian product of arbitrary sets in Java

后端 未结 9 2027
小鲜肉
小鲜肉 2020-11-22 07:28

Do you know some neat Java libaries that allow you to make cartesian product of two (or more) sets?

For example: I have three sets. One with objects of class Person

相关标签:
9条回答
  • 2020-11-22 07:35

    The number of sets might vary so I cannot do this in nested foreach loop.

    Two hints:

    • A x B x C = A x (B x C)
    • Recursion
    0 讨论(0)
  • 2020-11-22 07:37

    Here is an Iterable, which allows you to use a simplified for-loop:

    import java.util.*;
    
    // let's begin with the demo. Instead of Person and Gift, 
    // I use the well known char and int. 
    class CartesianIteratorTest {
    
        public static void main (String[] args) {
            List <Object> lc = Arrays.asList (new Object [] {'A', 'B', 'C', 'D'});
            List <Object> lC = Arrays.asList (new Object [] {'a', 'b', 'c'});   
            List <Object> li = Arrays.asList (new Object [] {1, 2, 3, 4});
                // sometimes, a generic solution like List <List <String>>
                // might be possible to use - typically, a mixture of types is 
                // the common nominator 
            List <List <Object>> llo = new ArrayList <List <Object>> ();
            llo.add (lc);
            llo.add (lC);
            llo.add (li);
    
            // Preparing the List of Lists is some work, but then ...    
            CartesianIterable <Object> ci = new CartesianIterable <Object> (llo);
    
            for (List <Object> lo: ci)
                show (lo);
        }
    
        public static void show (List <Object> lo) {
            System.out.print ("(");
            for (Object o: lo)
                System.out.print (o + ", ");
            System.out.println (")");
        }
    }
    

    How is it done? We need an Iterable, to use the simplified for-loop, and an Iterator has to be returned from the Iterable. We return a List of Objects - this could be a Set instead of List, but Set has no indexed access, so it would be a bit more complicated, to implement it with Set instead of List. Instead of a generic solution, Object would have been fine for many purposes, but generics allow for more restrictions.

    class CartesianIterator <T> implements Iterator <List <T>> {
    
        private final List <List <T>> lilio;    
        private int current = 0;
        private final long last;
    
        public CartesianIterator (final List <List <T>> llo) {
            lilio = llo;
            long product = 1L;
            for (List <T> lio: lilio)
                product *= lio.size ();
            last = product;
        } 
    
        public boolean hasNext () {
            return current != last;
        }
    
        public List <T> next () {
            ++current;
            return get (current - 1, lilio);
        }
    
        public void remove () {
            ++current;
        }
    
        private List<T> get (final int n, final List <List <T>> lili) {
            switch (lili.size ())
            {
                case 0: return new ArrayList <T> (); // no break past return;
                default: {
                    List <T> inner = lili.get (0);
                    List <T> lo = new ArrayList <T> ();
                    lo.add (inner.get (n % inner.size ()));
                    lo.addAll (get (n / inner.size (), lili.subList (1, lili.size ())));
                    return lo;
                }
            }
        }
    }
    

    The mathematical work is done in the 'get'-method. Think about 2 sets of 10 elements. You have a total of 100 combinations, enumerated from 00, 01, 02, ... 10, ... to 99. For 5 X 10 elements 50, for 2 X 3 elements 6 combinations. The modulo of the sublist size helps to pick one element for each iteration.

    Iterable i the least interesting thing here:

    class CartesianIterable <T> implements Iterable <List <T>> {
    
        private List <List <T>> lilio;  
    
        public CartesianIterable (List <List <T>> llo) {
            lilio = llo;
        }
    
        public Iterator <List <T>> iterator () {
            return new CartesianIterator <T> (lilio);
        }
    }
    

    To implement Iterable, which allows the for-each kind of loop, we have to implement iterator (), and for Iterator we have to implement hasNext (), next () and remove ().

    Result:

    (A, a, 1, )
    (B, a, 1, )
    (C, a, 1, )
    (D, a, 1, )
    (A, b, 1, )
    (B, b, 1, )
    (C, b, 1, )
    (D, b, 1, )
    ...
    (A, a, 2, )
    ...
    (C, c, 4, )
    (D, c, 4, )
    
    0 讨论(0)
  • 2020-11-22 07:40

    Edit: Previous solutions for two sets removed. See edit history for details.

    Here is a way to do it recursively for an arbitrary number of sets:

    public static Set<Set<Object>> cartesianProduct(Set<?>... sets) {
        if (sets.length < 2)
            throw new IllegalArgumentException(
                    "Can't have a product of fewer than two sets (got " +
                    sets.length + ")");
    
        return _cartesianProduct(0, sets);
    }
    
    private static Set<Set<Object>> _cartesianProduct(int index, Set<?>... sets) {
        Set<Set<Object>> ret = new HashSet<Set<Object>>();
        if (index == sets.length) {
            ret.add(new HashSet<Object>());
        } else {
            for (Object obj : sets[index]) {
                for (Set<Object> set : _cartesianProduct(index+1, sets)) {
                    set.add(obj);
                    ret.add(set);
                }
            }
        }
        return ret;
    }
    

    Note that it is impossible to keep any generic type information with the returned sets. If you knew in advance how many sets you wanted to take the product of, you could define a generic tuple to hold that many elements (for instance Triple<A, B, C>), but there is no way to have an arbitrary number of generic parameters in Java.

    0 讨论(0)
  • 2020-11-22 07:42

    Here is an Iterator that gives the cartesian product of a two-dimensional array, where the arrays components represent the sets from the question (one can always convert actual Sets to arrays):

    public class CartesianIterator<T> implements Iterator<T[]> {
        private final T[][] sets;
        private final IntFunction<T[]> arrayConstructor;
    
        private int count = 0;
        private T[] next = null;
    
        public CartesianIterator(T[][] sets, IntFunction<T[]> arrayConstructor) {
            Objects.requireNonNull(sets);
            Objects.requireNonNull(arrayConstructor);
    
            this.sets = copySets(sets);
            this.arrayConstructor = arrayConstructor;
        }
    
        private static <T> T[][] copySets(T[][] sets) {
            // If any of the arrays are empty, then the entire iterator is empty.
            // This prevents division by zero in `hasNext`.
            for (T[] set : sets) {
                if (set.length == 0) {
                    return Arrays.copyOf(sets, 0);
                }
            }
            return sets.clone();
        }
    
        @Override
        public boolean hasNext() {
            if (next != null) {
                return true;
            }
    
            int tmp = count;
            T[] value = arrayConstructor.apply(sets.length);
            for (int i = 0; i < value.length; i++) {
                T[] set = sets[i];
    
                int radix = set.length;
                int index = tmp % radix;
    
                value[i] = set[index];
    
                tmp /= radix;
            }
    
            if (tmp != 0) {
                // Overflow.
                return false;
            }
    
            next = value;
            count++;
    
            return true;
        }
    
        @Override
        public T[] next() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }
    
            T[] tmp = next;
            next = null;
            return tmp;
        }
    }
    

    The basic idea is to treat count as a multi-radix number (digit i has its own radix which equals the length of the i'th "set"). Whenever we have to resolve next (that is, when hasNext() is called and next is null), we decompose the number into its digits in this multi-radix. These digits are now used as the indices from which we draw elements from the different sets.

    Example use:

    String[] a = { "a", "b", "c"};
    String[] b = { "X" };
    String[] c = { "r", "s" };
    
    String[][] abc = { a, b, c };
    
    Iterable<String[]> it = () -> new CartesianIterator<>(abc, String[]::new);
    for (String[] s : it) {
        System.out.println(Arrays.toString(s));
    }
    

    Output:

    [a, X, r]
    [b, X, r]
    [c, X, r]
    [a, X, s]
    [b, X, s]
    [c, X, s]
    

    If one doesn't like arrays, the code is trivially convertible into using collections.

    I guess this is more or less similar to the answer given by "user unknown", only without recursion and collections.

    0 讨论(0)
  • 2020-11-22 07:46

    Yes, there is Functional Java.

    For a set (s):

    s.bind(P.p2(), s);

    0 讨论(0)
  • 2020-11-22 07:48

    Index-based solution

    Working with the indices is an alternative that is fast and memory-efficient and can handle any number of sets. Implementing Iterable allows easy use in a for-each loop. See the #main method for a usage example.

    public class CartesianProduct implements Iterable<int[]>, Iterator<int[]> {
    
        private final int[] _lengths;
        private final int[] _indices;
        private boolean _hasNext = true;
    
        public CartesianProduct(int[] lengths) {
            _lengths = lengths;
            _indices = new int[lengths.length];
        }
    
        public boolean hasNext() {
            return _hasNext;
        }
    
        public int[] next() {
            int[] result = Arrays.copyOf(_indices, _indices.length);
            for (int i = _indices.length - 1; i >= 0; i--) {
                if (_indices[i] == _lengths[i] - 1) {
                    _indices[i] = 0;
                    if (i == 0) {
                        _hasNext = false;
                    }
                } else {
                    _indices[i]++;
                    break;
                }
            }
            return result;
        }
    
        public Iterator<int[]> iterator() {
            return this;
        }
    
        public void remove() {
            throw new UnsupportedOperationException();
        }
    
        /**
         * Usage example. Prints out
         * 
         * <pre>
         * [0, 0, 0] a, NANOSECONDS, 1
         * [0, 0, 1] a, NANOSECONDS, 2
         * [0, 0, 2] a, NANOSECONDS, 3
         * [0, 0, 3] a, NANOSECONDS, 4
         * [0, 1, 0] a, MICROSECONDS, 1
         * [0, 1, 1] a, MICROSECONDS, 2
         * [0, 1, 2] a, MICROSECONDS, 3
         * [0, 1, 3] a, MICROSECONDS, 4
         * [0, 2, 0] a, MILLISECONDS, 1
         * [0, 2, 1] a, MILLISECONDS, 2
         * [0, 2, 2] a, MILLISECONDS, 3
         * [0, 2, 3] a, MILLISECONDS, 4
         * [0, 3, 0] a, SECONDS, 1
         * [0, 3, 1] a, SECONDS, 2
         * [0, 3, 2] a, SECONDS, 3
         * [0, 3, 3] a, SECONDS, 4
         * [0, 4, 0] a, MINUTES, 1
         * [0, 4, 1] a, MINUTES, 2
         * ...
         * </pre>
         */
        public static void main(String[] args) {
            String[] list1 = { "a", "b", "c", };
            TimeUnit[] list2 = TimeUnit.values();
            int[] list3 = new int[] { 1, 2, 3, 4 };
    
            int[] lengths = new int[] { list1.length, list2.length, list3.length };
            for (int[] indices : new CartesianProduct(lengths)) {
                System.out.println(Arrays.toString(indices) //
                        + " " + list1[indices[0]] //
                        + ", " + list2[indices[1]] //
                        + ", " + list3[indices[2]]);
            }
        }
    }
    
    0 讨论(0)
提交回复
热议问题