How to add variables to progress bar in Keras?

后端 未结 3 1969
清酒与你
清酒与你 2020-12-04 17:09

I\'d like to monitor eg. the learning rate during training in Keras both in the progress bar and in Tensorboard. I figure there must be a way to specify which variables are

相关标签:
3条回答
  • 2020-12-04 17:34

    Another way (in fact encouraged one) of how to pass custom values to TensorBoard is by sublcassing the keras.callbacks.TensorBoard class. This allows you to apply custom functions to obtain desired metrics and pass them directly to TensorBoard.

    Here is an example for learning rate of Adam optimizer:

    class SubTensorBoard(TensorBoard):
        def __init__(self, *args, **kwargs):
            super(SubTensorBoard, self).__init__(*args, **kwargs)
    
        def lr_getter(self):
            # Get vals
            decay = self.model.optimizer.decay
            lr = self.model.optimizer.lr
            iters = self.model.optimizer.iterations # only this should not be const
            beta_1 = self.model.optimizer.beta_1
            beta_2 = self.model.optimizer.beta_2
            # calculate
            lr = lr * (1. / (1. + decay * K.cast(iters, K.dtype(decay))))
            t = K.cast(iters, K.floatx()) + 1
            lr_t = lr * (K.sqrt(1. - K.pow(beta_2, t)) / (1. - K.pow(beta_1, t)))
            return np.float32(K.eval(lr_t))
    
        def on_epoch_end(self, episode, logs = {}):
            logs.update({"lr": self.lr_getter()})
            super(SubTensorBoard, self).on_epoch_end(episode, logs)
    
    0 讨论(0)
  • 2020-12-04 17:44

    It can be achieved via a custom metric. Take the learning rate as an example:

    def get_lr_metric(optimizer):
        def lr(y_true, y_pred):
            return optimizer.lr
        return lr
    
    x = Input((50,))
    out = Dense(1, activation='sigmoid')(x)
    model = Model(x, out)
    
    optimizer = Adam(lr=0.001)
    lr_metric = get_lr_metric(optimizer)
    model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['acc', lr_metric])
    
    # reducing the learning rate by half every 2 epochs
    cbks = [LearningRateScheduler(lambda epoch: 0.001 * 0.5 ** (epoch // 2)),
            TensorBoard(write_graph=False)]
    X = np.random.rand(1000, 50)
    Y = np.random.randint(2, size=1000)
    model.fit(X, Y, epochs=10, callbacks=cbks)
    

    The LR will be printed in the progress bar:

    Epoch 1/10
    1000/1000 [==============================] - 0s 103us/step - loss: 0.8228 - acc: 0.4960 - lr: 0.0010
    Epoch 2/10
    1000/1000 [==============================] - 0s 61us/step - loss: 0.7305 - acc: 0.4970 - lr: 0.0010
    Epoch 3/10
    1000/1000 [==============================] - 0s 62us/step - loss: 0.7145 - acc: 0.4730 - lr: 5.0000e-04
    Epoch 4/10
    1000/1000 [==============================] - 0s 58us/step - loss: 0.7129 - acc: 0.4800 - lr: 5.0000e-04
    Epoch 5/10
    1000/1000 [==============================] - 0s 58us/step - loss: 0.7124 - acc: 0.4810 - lr: 2.5000e-04
    Epoch 6/10
    1000/1000 [==============================] - 0s 63us/step - loss: 0.7123 - acc: 0.4790 - lr: 2.5000e-04
    Epoch 7/10
    1000/1000 [==============================] - 0s 61us/step - loss: 0.7119 - acc: 0.4840 - lr: 1.2500e-04
    Epoch 8/10
    1000/1000 [==============================] - 0s 61us/step - loss: 0.7117 - acc: 0.4880 - lr: 1.2500e-04
    Epoch 9/10
    1000/1000 [==============================] - 0s 59us/step - loss: 0.7116 - acc: 0.4880 - lr: 6.2500e-05
    Epoch 10/10
    1000/1000 [==============================] - 0s 63us/step - loss: 0.7115 - acc: 0.4880 - lr: 6.2500e-05
    

    Then, you can visualize the LR curve in TensorBoard.

    0 讨论(0)
  • 2020-12-04 17:53

    I've come to this question because I wanted to log more variables in the Keras progress bar. This is the way I did it after reading the answers here:

    class UpdateMetricsCallback(tf.keras.callbacks.Callback):
      def on_batch_end(self, batch, logs):
        logs.update({'my_batch_metric' : 0.1, 'my_other_batch_metric': 0.2})
      def on_epoch_end(self, epoch, logs):
        logs.update({'my_epoch_metric' : 0.1, 'my_other_epoch_metric': 0.2})
    
    model.fit(...,
      callbacks=[UpdateMetricsCallback()]
    )
    

    I hope it helps others.

    0 讨论(0)
提交回复
热议问题