As the title explains I have a very fundamental programming question which I have just not been able to grok yet. Filtering out all of the (extremely clever) \"In order to
Many of the answers above are very good. A useful technique for solving recursion though, is to spell out first what we want to do and code as a human would solve it . In the above case, we want to sum up a sequence of consecutive integers (using the numbers from above):
2, 3, 4, 5 //adding these numbers would sum to 14
Now, note that these lines are confusing (not wrong, but confusing).
if (a > b) {
return 0
}
Why the test a>b
?, and whyreturn 0
Let's change the code to reflect more closely what a human does
func sumInts(a: Int, b: Int) -> Int {
if (a == b) {
return b // When 'a equals b' I'm at the most Right integer, return it
}
else {
return a + sumInts(a: a + 1, b: b)
}
}
Can we do it even more human like? Yes! Usually we sum up from left to right (2+3+...). But the above recursion is summing from right to left (...+4+5). Change the code to reflect it (The -
can be a little intimidating, but not much)
func sumInts(a: Int, b: Int) -> Int {
if (a == b) {
return b // When I'm at the most Left integer, return it
}
else {
return sumInts(a: a, b: b - 1) + b
}
}
Some may find this function more confusing since we are starting from the 'far' end, but practicing can make it feel natural (and it is another good 'thinking' technique: Trying 'both' sides when solving a recursion). And again, the function reflects what a human (most?) does: Takes the sum of all left integers and adds the 'next' right integer.
A little bit off-topic, I know, but... try looking up recursion in Google... You'll see by example what it means :-)
Earlier versions of Google returned the following text (cited from memory):
Recursion
See Recursion
On September 10th 2014, the joke about recursion has been updated:
Recursion
Did you mean: Recursion
For another reply, see this answer.
You might be interested in Nisan and Schocken's implementation of functions. The linked pdf is part of a free online course. It describes the second part of a virtual machine implementation in which the student should write a virtual-machine-language-to-machine-language compiler. The function implementation they propose is capable of recursion because it is stack-based.
To introduce you to the function implementation: Consider the following virtual machine code:
If Swift compiled to this virtual machine language, then the following block of Swift code:
mult(a: 2, b: 3) - 4
would compile down to
push constant 2 // Line 1
push constant 3 // Line 2
call mult // Line 3
push constant 4 // Line 4
sub // Line 5
The virtual machine language is designed around a global stack. push constant n
pushes an integer onto this global stack.
After executing lines 1 and 2, the stack looks like:
256: 2 // Argument 0
257: 3 // Argument 1
256
and 257
are memory addresses.
call mult
pushes the return line number (3) onto the stack and allocates space for the function's local variables.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 0 // local 0
...and it goes-to the label function mult
. The code inside mult
is executed. As a result of executing that code we compute the product of 2 and 3, which is stored in the function's 0th local variable.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 6 // local 0
Just before return
ing from mult, you will notice the line:
push local 0 // push result
We will push the product onto the stack.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 6 // local 0
260: 6 // product
When we return, the following happens:
After returning we are ready to execute line 4, and our stack looks like this:
256: 6 // product that we just returned
Now we push 4 onto the stack.
256: 6
257: 4
sub
is a primitive function of the virtual machine language. It takes two arguments and returns its result in the usual address: that of the 0th argument.
Now we have
256: 2 // 6 - 4 = 2
Now that you know how a function call works, it is relatively simple to understand how recursion works. No magic, just a stack.
I have implemented your sumInts
function in this virtual machine language:
function sumInts 0 // `0` means it has no local variables.
label IF
push argument 0
push argument 1
lte
if-goto ELSE_CASE
push constant 0
return
label ELSE_CASE
push constant 2
push argument 0
push constant 1
add
push argument 1
call sumInts // Line 15
add // Line 16
return // Line 17
// End of function
Now I will call it:
push constant 2
push constant 5
call sumInts // Line 21
The code executes and we get all the way to the stopping point where lte
returns false
. This is what the stack looks like at this point:
// First invocation
256: 2 // argument 0
257: 5 // argument 1
258: 21 // return line number
259: 2 // augend
// Second
260: 3 // argument 0
261: 5 // argument 1
262: 15 // return line number
263: 3 // augend
// Third
264: 4 // argument 0
265: 5 // argument 1
266: 15 // return line number
267: 4 // augend
// Fourth
268: 5 // argument 0
269: 5 // argument 1
270: 15 // return line number
271: 5 // augend
// Fifth
272: 6 // argument 0
273: 5 // argument 1
274: 15 // return line number
275: 0 // return value
Now let's "unwind" our recursion. return
0 and goto line 15 and advance.
271: 5
272: 0
Line 16: add
271: 5
Line 17: return
5 and goto line 15 and advance.
267: 4
268: 5
Line 16: add
267: 9
Line 17: return
9 and goto line 15 and advance.
263: 3
264: 9
Line 16: add
263: 12
Line 17: return
12 and goto line 15 and advance.
259: 2
260: 12
Line 16: add
259: 14
Line 17: return
14 and goto line 21 and advance.
256: 14
There you have it. Recursion: Glorified goto
.
One really good tip I came across in learning and really understanding recursion is to spend some time learning a language that doesn't have any form of loop construct other than via recursion. That way you'll get a great feel for how to USE recursion via practice.
I followed http://www.htdp.org/ which, as well as being a Scheme tutorial, is also a great introduction on how to design programs in terms of the architecture and design.
But basically, you need to invest some time. Without a 'firm' grasp of recursion certain algorithms, such as backtracking, will always seem 'hard' or even 'magic' to you. So, persevere. :-D
I hope this helps and Good Luck!
Let me tell you with an example of Fibonacci series, Fibonacci is
t(n) = t(n - 1) + n;
if n = 0 then 1
so let see how recursion works, I just replace n
in t(n)
with n-1
and so on. it looks:
t(n-1) = t(n - 2) + n+1;
t(n-1) = t(n - 3) + n+1 + n;
t(n-1) = t(n - 4) + n+1 + n+2 + n;
.
.
.
t(n) = t(n-k)+ ... + (n-k-3) + (n-k-2)+ (n-k-1)+ n ;
we know if t(0)=(n-k)
equals to 1
then n-k=0
so n=k
we replace k
with n
:
t(n) = t(n-n)+ ... + (n-n+3) + (n-n+2)+ (n-n+1)+ n ;
if we omit n-n
then:
t(n)= t(0)+ ... + 3+2+1+(n-1)+n;
so 3+2+1+(n-1)+n
is natural number. it calculates as Σ3+2+1+(n-1)+n = n(n+1)/2 => n²+n/2
the result for fib is : O(1 + n²) = O(n²)
This the best way to understand recursive relation
1.The function is called recursively until a condition is met. That condition is
a > b
. When this condition is met, return 0. At first glance, I would expect the return value to be 0 which is obviously incorrect.
Here is what the computer computing sumInts(2,5)
would think if it were able to:
I want to compute sumInts(2, 5)
for this, I need to compute sumInts(3, 5)
and add 2 to the result.
I want to compute sumInts(3, 5)
for this, I need to compute sumInts(4, 5)
and add 3 to the result.
I want to compute sumInts(4, 5)
for this, I need to compute sumInts(5, 5)
and add 4 to the result.
I want to compute sumInts(5, 5)
for this, I need to compute sumInts(6, 5)
and add 5 to the result.
I want to compute sumInts(6, 5)
since 6 > 5, this is zero.
The computation yielded 0, therefore I shall return 5 = 5 + 0.
The computation yielded 5, therefore I shall return 9 = 4 + 5.
The computation yielded 9, therefore I shall return 12 = 3 + 9.
The computation yielded 12, therefore I shall return 14 = 2 + 12.
As you see, some call to the function sumInts
actually returns 0 however this not the final value because the computer still has to add 5 to that 0, then 4 to the result, then 3, then 2, as described by the four last sentences of the thoughts of our computer. Note that in the recursion, the computer does not only have to compute the recursive call, it also has to remember what to do with the value returned by the recursive call. There is a special area of computer's memory called the stack where this kind of information is saved, this space is limited and functions that are too recursive can exhaust the stack: this is the stack overflow giving its name to our most loved website.
Your statement seems to make the implicit assumption that the computer forgets what it were at when doing a recursive call, but it does not, this is why your conclusion does not match your observation.
2.Printing out the value of 'a' on each iteration yields a value which I would expect: 2, 3, 4, 5 (at which point 5+1 > b which meets the first condition: a > b) but I still don't see how the value of 14 is achieved.
This is because the return value is not an a
itself but the sum of the value of a
and the value returned by the recursive call.