I find the named parameters feature in C# quite useful in some cases.
calculateBMI(70, height: 175);
What can I use if I want this in JavaS
Trying Node-6.4.0 ( process.versions.v8 = '5.0.71.60') and Node Chakracore-v7.0.0-pre8 and then Chrome-52 (V8=5.2.361.49), I've noticed that named parameters are almost implemented, but that order has still precedence. I can't find what the ECMA standard says.
>function f(a=1, b=2){ console.log(`a=${a} + b=${b} = ${a+b}`) }
> f()
a=1 + b=2 = 3
> f(a=5)
a=5 + b=2 = 7
> f(a=7, b=10)
a=7 + b=10 = 17
But order is required!! Is it the standard behaviour?
> f(b=10)
a=10 + b=2 = 12
If you want to make it clear what each of the parameters are, rather than just calling
someFunction(70, 115);
why not do the following
var width = 70, height = 115;
someFunction(width, height);
sure, it's an extra line of code, but it wins on readability.
ES2015 and later
In ES2015, parameter destructuring can be used to simulate named parameters. It would require the caller to pass an object, but you can avoid all of the checks inside the function if you also use default parameters:
myFunction({ param1 : 70, param2 : 175});
function myFunction({param1, param2}={}){
// ...function body...
}
// Or with defaults,
function myFunc({
name = 'Default user',
age = 'N/A'
}={}) {
// ...function body...
}
ES5
There is a way to come close to what you want, but it is based on the output of Function.prototype.toString [ES5], which is implementation dependent to some degree, so it might not be cross-browser compatible.
The idea is to parse the parameter names from the string representation of the function so that you can associate the properties of an object with the corresponding parameter.
A function call could then look like
func(a, b, {someArg: ..., someOtherArg: ...});
where a
and b
are positional arguments and the last argument is an object with named arguments.
For example:
var parameterfy = (function() {
var pattern = /function[^(]*\(([^)]*)\)/;
return function(func) {
// fails horribly for parameterless functions ;)
var args = func.toString().match(pattern)[1].split(/,\s*/);
return function() {
var named_params = arguments[arguments.length - 1];
if (typeof named_params === 'object') {
var params = [].slice.call(arguments, 0, -1);
if (params.length < args.length) {
for (var i = params.length, l = args.length; i < l; i++) {
params.push(named_params[args[i]]);
}
return func.apply(this, params);
}
}
return func.apply(null, arguments);
};
};
}());
Which you would use as:
var foo = parameterfy(function(a, b, c) {
console.log('a is ' + a, ' | b is ' + b, ' | c is ' + c);
});
foo(1, 2, 3); // a is 1 | b is 2 | c is 3
foo(1, {b:2, c:3}); // a is 1 | b is 2 | c is 3
foo(1, {c:3}); // a is 1 | b is undefined | c is 3
foo({a: 1, c:3}); // a is 1 | b is undefined | c is 3
DEMO
There are some drawbacks to this approach (you have been warned!):
undefined
(that's different from having no value at all). That means you cannot use arguments.length
to test how many arguments have been passed.Instead of having a function creating the wrapper, you could also have a function which accepts a function and various values as arguments, such as
call(func, a, b, {posArg: ... });
or even extend Function.prototype
so that you could do:
foo.execute(a, b, {posArg: ...});
Contrary to what is commonly believed, named parameters can be implemented in standard, old-school JavaScript (for boolean parameters only) by means of a simple, neat coding convention, as shown below.
function f(p1=true, p2=false) {
...
}
f(!!"p1"==false, !!"p2"==true); // call f(p1=false, p2=true)
Caveats:
Ordering of arguments must be preserved - but the pattern is still useful, since it makes it obvious which actual argument is meant for which formal parameter without having to grep for the function signature or use an IDE.
This only works for booleans. However, I'm sure a similar pattern could be developed for other types using JavaScript's unique type coercion semantics.