Is it true that C++0x will come without semaphores? There are already some questions on Stack Overflow regarding the use of semaphores. I use them (posix semaphores) all the
in acordance with posix semaphores, I would add
class semaphore
{
...
bool trywait()
{
boost::mutex::scoped_lock lock(mutex_);
if(count_)
{
--count_;
return true;
}
else
{
return false;
}
}
};
And I much prefer using a synchronisation mechanism at a convenient level of abstraction, rather than always copy pasting a stitched-together version using more basic operators.
In case someone is interested in the atomic version, here is the implementation. The performance is expected better than the mutex & condition variable version.
class semaphore_atomic
{
public:
void notify() {
count_.fetch_add(1, std::memory_order_release);
}
void wait() {
while (true) {
int count = count_.load(std::memory_order_relaxed);
if (count > 0) {
if (count_.compare_exchange_weak(count, count-1, std::memory_order_acq_rel, std::memory_order_relaxed)) {
break;
}
}
}
}
bool try_wait() {
int count = count_.load(std::memory_order_relaxed);
if (count > 0) {
if (count_.compare_exchange_strong(count, count-1, std::memory_order_acq_rel, std::memory_order_relaxed)) {
return true;
}
}
return false;
}
private:
std::atomic_int count_{0};
};
You can easily build one from a mutex and a condition variable:
#include <mutex>
#include <condition_variable>
class semaphore
{
private:
std::mutex mutex_;
std::condition_variable condition_;
unsigned long count_ = 0; // Initialized as locked.
public:
void notify() {
std::lock_guard<decltype(mutex_)> lock(mutex_);
++count_;
condition_.notify_one();
}
void wait() {
std::unique_lock<decltype(mutex_)> lock(mutex_);
while(!count_) // Handle spurious wake-ups.
condition_.wait(lock);
--count_;
}
bool try_wait() {
std::lock_guard<decltype(mutex_)> lock(mutex_);
if(count_) {
--count_;
return true;
}
return false;
}
};
You can also check out cpp11-on-multicore - it has a portable and optimal semaphore implementation.
The repository also contains other threading goodies that complement c++11 threading.
I found the shared_ptr and weak_ptr, a long with a list, did the job I needed. My issue was, I had several clients wanting to interact with a host's internal data. Typically, the host updates the data on it's own, however, if a client requests it, the host needs to stop updating until no clients are accessing the host data. At the same time, a client could ask for exclusive access, so that no other clients, nor the host, could modify that host data.
How I did this was, I created a struct:
struct UpdateLock
{
typedef std::shared_ptr< UpdateLock > ptr;
};
Each client would have a member of such:
UpdateLock::ptr m_myLock;
Then the host would have a weak_ptr member for exclusivity, and a list of weak_ptrs for non-exclusive locks:
std::weak_ptr< UpdateLock > m_exclusiveLock;
std::list< std::weak_ptr< UpdateLock > > m_locks;
There is a function to enable locking, and another function to check if the host is locked:
UpdateLock::ptr LockUpdate( bool exclusive );
bool IsUpdateLocked( bool exclusive ) const;
I test for locks in LockUpdate, IsUpdateLocked, and periodically in the host's Update routine. Testing for a lock is as simple as checking if the weak_ptr's expired, and removing any expired from the m_locks list (I only do this during the host update), I can check if the list is empty; at the same time, I get automatic unlocking when a client resets the shared_ptr they are hanging onto, which also happens when a client gets destroyed automatically.
The over all effect is, since clients rarely need exclusivity (typically reserved for additions and deletions only), most of the time a request to LockUpdate( false ), that is to say non-exclusive, succeeds so long as (! m_exclusiveLock). And a LockUpdate( true ), a request for exclusivity, succeeds only when both (! m_exclusiveLock) and (m_locks.empty()).
A queue could be added to mitigate between exclusive and non-exclusive locks, however, I have had no collisions thus far, so I intend to wait until that happens to add the solution (mostly so I have a real-world test condition).
So far this is working well for my needs; I can imagine the need to expand this, and some issues that might arise over expanded use, however, this was quick to implement, and required very little custom code.
I decided to write the most robust/generic C++11 semaphore I could, in the style of the standard as much as I could (note using semaphore = ...
, you normally would just use the name semaphore
similar to normally using string
not basic_string
):
template <typename Mutex, typename CondVar>
class basic_semaphore {
public:
using native_handle_type = typename CondVar::native_handle_type;
explicit basic_semaphore(size_t count = 0);
basic_semaphore(const basic_semaphore&) = delete;
basic_semaphore(basic_semaphore&&) = delete;
basic_semaphore& operator=(const basic_semaphore&) = delete;
basic_semaphore& operator=(basic_semaphore&&) = delete;
void notify();
void wait();
bool try_wait();
template<class Rep, class Period>
bool wait_for(const std::chrono::duration<Rep, Period>& d);
template<class Clock, class Duration>
bool wait_until(const std::chrono::time_point<Clock, Duration>& t);
native_handle_type native_handle();
private:
Mutex mMutex;
CondVar mCv;
size_t mCount;
};
using semaphore = basic_semaphore<std::mutex, std::condition_variable>;
template <typename Mutex, typename CondVar>
basic_semaphore<Mutex, CondVar>::basic_semaphore(size_t count)
: mCount{count}
{}
template <typename Mutex, typename CondVar>
void basic_semaphore<Mutex, CondVar>::notify() {
std::lock_guard<Mutex> lock{mMutex};
++mCount;
mCv.notify_one();
}
template <typename Mutex, typename CondVar>
void basic_semaphore<Mutex, CondVar>::wait() {
std::unique_lock<Mutex> lock{mMutex};
mCv.wait(lock, [&]{ return mCount > 0; });
--mCount;
}
template <typename Mutex, typename CondVar>
bool basic_semaphore<Mutex, CondVar>::try_wait() {
std::lock_guard<Mutex> lock{mMutex};
if (mCount > 0) {
--mCount;
return true;
}
return false;
}
template <typename Mutex, typename CondVar>
template<class Rep, class Period>
bool basic_semaphore<Mutex, CondVar>::wait_for(const std::chrono::duration<Rep, Period>& d) {
std::unique_lock<Mutex> lock{mMutex};
auto finished = mCv.wait_for(lock, d, [&]{ return mCount > 0; });
if (finished)
--mCount;
return finished;
}
template <typename Mutex, typename CondVar>
template<class Clock, class Duration>
bool basic_semaphore<Mutex, CondVar>::wait_until(const std::chrono::time_point<Clock, Duration>& t) {
std::unique_lock<Mutex> lock{mMutex};
auto finished = mCv.wait_until(lock, t, [&]{ return mCount > 0; });
if (finished)
--mCount;
return finished;
}
template <typename Mutex, typename CondVar>
typename basic_semaphore<Mutex, CondVar>::native_handle_type basic_semaphore<Mutex, CondVar>::native_handle() {
return mCv.native_handle();
}