To launch programs from my Python-scripts, I\'m using the following method:
def execute(command):
process = subprocess.Popen(command, shell=True, stdout=s
For anyone trying the answers to this question to get the stdout from a Python script note that Python buffers its stdout, and therefore it may take a while to see the stdout.
This can be rectified by adding the following after each stdout write in the target script:
sys.stdout.flush()
@tokland
tried your code and corrected it for 3.4 and windows dir.cmd is a simple dir command, saved as cmd-file
import subprocess
c = "dir.cmd"
def execute(command):
popen = subprocess.Popen(command, stdout=subprocess.PIPE,bufsize=1)
lines_iterator = iter(popen.stdout.readline, b"")
while popen.poll() is None:
for line in lines_iterator:
nline = line.rstrip()
print(nline.decode("latin"), end = "\r\n",flush =True) # yield line
execute(c)
To print subprocess' output line-by-line as soon as its stdout buffer is flushed in Python 3:
from subprocess import Popen, PIPE, CalledProcessError
with Popen(cmd, stdout=PIPE, bufsize=1, universal_newlines=True) as p:
for line in p.stdout:
print(line, end='') # process line here
if p.returncode != 0:
raise CalledProcessError(p.returncode, p.args)
Notice: you do not need p.poll()
-- the loop ends when eof is reached. And you do not need iter(p.stdout.readline, '')
-- the read-ahead bug is fixed in Python 3.
See also, Python: read streaming input from subprocess.communicate().
This PoC constantly reads the output from a process and can be accessed when needed. Only the last result is kept, all other output is discarded, hence prevents the PIPE from growing out of memory:
import subprocess
import time
import threading
import Queue
class FlushPipe(object):
def __init__(self):
self.command = ['python', './print_date.py']
self.process = None
self.process_output = Queue.LifoQueue(0)
self.capture_output = threading.Thread(target=self.output_reader)
def output_reader(self):
for line in iter(self.process.stdout.readline, b''):
self.process_output.put_nowait(line)
def start_process(self):
self.process = subprocess.Popen(self.command,
stdout=subprocess.PIPE)
self.capture_output.start()
def get_output_for_processing(self):
line = self.process_output.get()
print ">>>" + line
if __name__ == "__main__":
flush_pipe = FlushPipe()
flush_pipe.start_process()
now = time.time()
while time.time() - now < 10:
flush_pipe.get_output_for_processing()
time.sleep(2.5)
flush_pipe.capture_output.join(timeout=0.001)
flush_pipe.process.kill()
print_date.py
#!/usr/bin/env python
import time
if __name__ == "__main__":
while True:
print str(time.time())
time.sleep(0.01)
output: You can clearly see that there is only output from ~2.5s interval nothing in between.
>>>1520535158.51
>>>1520535161.01
>>>1520535163.51
>>>1520535166.01
None of the answers here addressed all of my needs.
A little background: I am using a ThreadPoolExecutor to manage a pool of threads, each launching a subprocess and running them concurrency. (In Python2.7, but this should work in newer 3.x as well). I don't want to use threads just for output gathering as I want as many available as possible for other things (a pool of 20 processes would be using 40 threads just to run; 1 for the process thread and 1 for stdout...and more if you want stderr I guess)
I'm stripping back a lot of exception and such here so this is based on code that works in production. Hopefully I didn't ruin it in the copy and paste. Also, feedback very much welcome!
import time
import fcntl
import subprocess
import time
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
# Make stdout non-blocking when using read/readline
proc_stdout = proc.stdout
fl = fcntl.fcntl(proc_stdout, fcntl.F_GETFL)
fcntl.fcntl(proc_stdout, fcntl.F_SETFL, fl | os.O_NONBLOCK)
def handle_stdout(proc_stream, my_buffer, echo_streams=True, log_file=None):
"""A little inline function to handle the stdout business. """
# fcntl makes readline non-blocking so it raises an IOError when empty
try:
for s in iter(proc_stream.readline, ''): # replace '' with b'' for Python 3
my_buffer.append(s)
if echo_streams:
sys.stdout.write(s)
if log_file:
log_file.write(s)
except IOError:
pass
# The main loop while subprocess is running
stdout_parts = []
while proc.poll() is None:
handle_stdout(proc_stdout, stdout_parts)
# ...Check for other things here...
# For example, check a multiprocessor.Value('b') to proc.kill()
time.sleep(0.01)
# Not sure if this is needed, but run it again just to be sure we got it all?
handle_stdout(proc_stdout, stdout_parts)
stdout_str = "".join(stdout_parts) # Just to demo
I'm sure there is overhead being added here but it is not a concern in my case. Functionally it does what I need. The only thing I haven't solved is why this works perfectly for log messages but I see some print
messages show up later and all at once.
Ok i managed to solve it without threads (any suggestions why using threads would be better are appreciated) by using a snippet from this question Intercepting stdout of a subprocess while it is running
def execute(command):
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
# Poll process for new output until finished
while True:
nextline = process.stdout.readline()
if nextline == '' and process.poll() is not None:
break
sys.stdout.write(nextline)
sys.stdout.flush()
output = process.communicate()[0]
exitCode = process.returncode
if (exitCode == 0):
return output
else:
raise ProcessException(command, exitCode, output)