I have some kind of test data and want to create a unit test for each item. My first idea was to do it like this:
import unittest
l = [[\"foo\", \"a\", \"a\
This is called "parametrization".
There are several tools that support this approach. E.g.:
The resulting code looks like this:
from parameterized import parameterized
class TestSequence(unittest.TestCase):
@parameterized.expand([
["foo", "a", "a",],
["bar", "a", "b"],
["lee", "b", "b"],
])
def test_sequence(self, name, a, b):
self.assertEqual(a,b)
Which will generate the tests:
test_sequence_0_foo (__main__.TestSequence) ... ok
test_sequence_1_bar (__main__.TestSequence) ... FAIL
test_sequence_2_lee (__main__.TestSequence) ... ok
======================================================================
FAIL: test_sequence_1_bar (__main__.TestSequence)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/local/lib/python2.7/site-packages/parameterized/parameterized.py", line 233, in <lambda>
standalone_func = lambda *a: func(*(a + p.args), **p.kwargs)
File "x.py", line 12, in test_sequence
self.assertEqual(a,b)
AssertionError: 'a' != 'b'
For historical reasons I'll leave the original answer circa 2008 ):
I use something like this:
import unittest
l = [["foo", "a", "a",], ["bar", "a", "b"], ["lee", "b", "b"]]
class TestSequense(unittest.TestCase):
pass
def test_generator(a, b):
def test(self):
self.assertEqual(a,b)
return test
if __name__ == '__main__':
for t in l:
test_name = 'test_%s' % t[0]
test = test_generator(t[1], t[2])
setattr(TestSequense, test_name, test)
unittest.main()
This can be solved elegantly using Metaclasses:
import unittest
l = [["foo", "a", "a",], ["bar", "a", "b"], ["lee", "b", "b"]]
class TestSequenceMeta(type):
def __new__(mcs, name, bases, dict):
def gen_test(a, b):
def test(self):
self.assertEqual(a, b)
return test
for tname, a, b in l:
test_name = "test_%s" % tname
dict[test_name] = gen_test(a,b)
return type.__new__(mcs, name, bases, dict)
class TestSequence(unittest.TestCase):
__metaclass__ = TestSequenceMeta
if __name__ == '__main__':
unittest.main()
Using unittest (since 3.4)
Since Python 3.4, the standard library unittest
package has the subTest
context manager.
See the documentation:
Example:
from unittest import TestCase
param_list = [('a', 'a'), ('a', 'b'), ('b', 'b')]
class TestDemonstrateSubtest(TestCase):
def test_works_as_expected(self):
for p1, p2 in param_list:
with self.subTest():
self.assertEqual(p1, p2)
You can also specify a custom message and parameter values to subTest()
:
with self.subTest(msg="Checking if p1 equals p2", p1=p1, p2=p2):
Using nose
The nose testing framework supports this.
Example (the code below is the entire contents of the file containing the test):
param_list = [('a', 'a'), ('a', 'b'), ('b', 'b')]
def test_generator():
for params in param_list:
yield check_em, params[0], params[1]
def check_em(a, b):
assert a == b
The output of the nosetests command:
> nosetests -v
testgen.test_generator('a', 'a') ... ok
testgen.test_generator('a', 'b') ... FAIL
testgen.test_generator('b', 'b') ... ok
======================================================================
FAIL: testgen.test_generator('a', 'b')
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/python2.5/site-packages/nose-0.10.1-py2.5.egg/nose/case.py", line 203, in runTest
self.test(*self.arg)
File "testgen.py", line 7, in check_em
assert a == b
AssertionError
----------------------------------------------------------------------
Ran 3 tests in 0.006s
FAILED (failures=1)
Meta-programming is fun, but can get on the way. Most solutions here make it difficult to:
So, my first suggestion is to follow the simple/explicit path (works with any test runner):
import unittest
class TestSequence(unittest.TestCase):
def _test_complex_property(self, a, b):
self.assertEqual(a,b)
def test_foo(self):
self._test_complex_property("a", "a")
def test_bar(self):
self._test_complex_property("a", "b")
def test_lee(self):
self._test_complex_property("b", "b")
if __name__ == '__main__':
unittest.main()
Since we shouldn't repeat ourselves, my second suggestion builds on @Javier's answer: embrace property based testing. Hypothesis library:
has many more interesting features (statistics, additional test output, ...)
class TestSequence(unittest.TestCase):
@given(st.text(), st.text())
def test_complex_property(self, a, b):
self.assertEqual(a,b)
To test your specific examples, just add:
@example("a", "a")
@example("a", "b")
@example("b", "b")
To run only one particular example, you can comment out the other examples (provided example will be run first). You may want to use @given(st.nothing())
. Another option is to replace the whole block by:
@given(st.just("a"), st.just("b"))
Ok, you don't have distinct test names. But maybe you just need:
Funnier example
import unittest
def generator(test_class, a, b):
def test(self):
self.assertEqual(a, b)
return test
def add_test_methods(test_class):
#First element of list is variable "a", then variable "b", then name of test case that will be used as suffix.
test_list = [[2,3, 'one'], [5,5, 'two'], [0,0, 'three']]
for case in test_list:
test = generator(test_class, case[0], case[1])
setattr(test_class, "test_%s" % case[2], test)
class TestAuto(unittest.TestCase):
def setUp(self):
print 'Setup'
pass
def tearDown(self):
print 'TearDown'
pass
_add_test_methods(TestAuto) # It's better to start with underscore so it is not detected as a test itself
if __name__ == '__main__':
unittest.main(verbosity=1)
RESULT:
>>>
Setup
FTearDown
Setup
TearDown
.Setup
TearDown
.
======================================================================
FAIL: test_one (__main__.TestAuto)
----------------------------------------------------------------------
Traceback (most recent call last):
File "D:/inchowar/Desktop/PyTrash/test_auto_3.py", line 5, in test
self.assertEqual(a, b)
AssertionError: 2 != 3
----------------------------------------------------------------------
Ran 3 tests in 0.019s
FAILED (failures=1)
Just use metaclasses, as seen here;
class DocTestMeta(type):
"""
Test functions are generated in metaclass due to the way some
test loaders work. For example, setupClass() won't get called
unless there are other existing test methods, and will also
prevent unit test loader logic being called before the test
methods have been defined.
"""
def __init__(self, name, bases, attrs):
super(DocTestMeta, self).__init__(name, bases, attrs)
def __new__(cls, name, bases, attrs):
def func(self):
"""Inner test method goes here"""
self.assertTrue(1)
func.__name__ = 'test_sample'
attrs[func.__name__] = func
return super(DocTestMeta, cls).__new__(cls, name, bases, attrs)
class ExampleTestCase(TestCase):
"""Our example test case, with no methods defined"""
__metaclass__ = DocTestMeta
Output:
test_sample (ExampleTestCase) ... OK