The following code is from Pathikrit\'s Dynamic Programming repository. I\'m mystified by both its beauty and peculiarity.
def subsetSum(s: List[Int], t: Int
I am the author of the above code.
/**
* Generic way to create memoized functions (even recursive and multiple-arg ones)
*
* @param f the function to memoize
* @tparam I input to f
* @tparam K the keys we should use in cache instead of I
* @tparam O output of f
*/
case class Memo[I <% K, K, O](f: I => O) extends (I => O) {
import collection.mutable.{Map => Dict}
type Input = I
type Key = K
type Output = O
val cache = Dict.empty[K, O]
override def apply(x: I) = cache getOrElseUpdate (x, f(x))
}
object Memo {
/**
* Type of a simple memoized function e.g. when I = K
*/
type ==>[I, O] = Memo[I, I, O]
}
In Memo[I <% K, K, O]
:
I: input
K: key to lookup in cache
O: output
The line I <% K
means the K
can be viewable (i.e. implicitly converted) from I
.
In most cases, I
should be K
e.g. if you are writing fibonacci
which is a function of type Int => Int
, it is okay to cache by Int
itself.
But, sometimes when you are writing memoization, you do not want to always memoize or cache by the input itself (I
) but rather a function of the input (K
) e.g when you are writing the subsetSum
algorithm which has input of type (List[Int], Int)
, you do not want to use List[Int]
as the key in your cache but rather you want use List[Int].size
as the part of the key in your cache.
So, here's a concrete case:
/**
* Subset sum algorithm - can we achieve sum t using elements from s?
* O(s.map(abs).sum * s.length)
*
* @param s set of integers
* @param t target
* @return true iff there exists a subset of s that sums to t
*/
def isSubsetSumAchievable(s: List[Int], t: Int): Boolean = {
type I = (List[Int], Int) // input type
type K = (Int, Int) // cache key i.e. (list.size, int)
type O = Boolean // output type
type DP = Memo[I, K, O]
// encode the input as a key in the cache i.e. make K implicitly convertible from I
implicit def encode(input: DP#Input): DP#Key = (input._1.length, input._2)
lazy val f: DP = Memo {
case (Nil, x) => x == 0 // an empty sequence can only achieve a sum of zero
case (a :: as, x) => f(as, x - a) || f(as, x) // try with/without a.head
}
f(s, t)
}
You can ofcourse shorten all these into a single line:
type DP = Memo[(List[Int], Int), (Int, Int), Boolean]
For the common case (when I = K
), you can simply do this: type ==>[I, O] = Memo[I, I, O]
and use it like this to calculate the binomial coeff with recursive memoization:
/**
* http://mathworld.wolfram.com/Combination.html
* @return memoized function to calculate C(n,r)
*/
val c: (Int, Int) ==> BigInt = Memo {
case (_, 0) => 1
case (n, r) if r > n/2 => c(n, n - r)
case (n, r) => c(n - 1, r - 1) + c(n - 1, r)
}
To see details how above syntax works, please refer to this question.
Here is a full example which calculates editDistance by encoding both the parameters of the input (Seq, Seq)
to (Seq.length, Seq.length)
:
/**
* Calculate edit distance between 2 sequences
* O(s1.length * s2.length)
*
* @return Minimum cost to convert s1 into s2 using delete, insert and replace operations
*/
def editDistance[A](s1: Seq[A], s2: Seq[A]) = {
type DP = Memo[(Seq[A], Seq[A]), (Int, Int), Int]
implicit def encode(key: DP#Input): DP#Key = (key._1.length, key._2.length)
lazy val f: DP = Memo {
case (a, Nil) => a.length
case (Nil, b) => b.length
case (a :: as, b :: bs) if a == b => f(as, bs)
case (a, b) => 1 + (f(a, b.tail) min f(a.tail, b) min f(a.tail, b.tail))
}
f(s1, s2)
}
And lastly, the canonical fibonacci example:
lazy val fib: Int ==> BigInt = Memo {
case 0 => 0
case 1 => 1
case n if n > 1 => fib(n-1) + fib(n-2)
}
println(fib(100))