I am having the following code using RxJava Observable api :
Observable observable = fileProcessor.processFileObservable(processedFile.getAbsolut
RxJava is often misunderstood when it comes to the asynchronous/multithreaded aspects of it. The coding of multithreaded operations is simple, but understanding the abstraction is another thing.
A common question about RxJava is how to achieve parallelization, or emitting multiple items concurrently from an Observable. Of course, this definition breaks the Observable Contract which states that onNext() must be called sequentially and never concurrently by more than one thread at a time.
To achieve parallelism you need multiple Observables.
This runs in a single thread:
Observable<Integer> vals = Observable.range(1,10);
vals.subscribeOn(Schedulers.computation())
.map(i -> intenseCalculation(i))
.subscribe(val -> System.out.println("Subscriber received "
+ val + " on "
+ Thread.currentThread().getName()));
This runs in multiple threads:
Observable<Integer> vals = Observable.range(1,10);
vals.flatMap(val -> Observable.just(val)
.subscribeOn(Schedulers.computation())
.map(i -> intenseCalculation(i))
).subscribe(val -> System.out.println(val));
Code and text comes from this blog post.
RxJava 2.0.5 introduced parallel flows and ParallelFlowable, which makes parallel execution simpler and more declarative.
You no longer have to create Observable
/Flowable
within flatMap
, you can simply call parallel()
on Flowable
and it returns ParallelFlowable
.
It's not as feature rich as a regular Flowable
, because concurrency raises many issues with Rx contracts, but you have basic map()
, filter()
and many more, which should be enough in most cases.
So instead of this flow from @LordRaydenMK answer:
Observable<Integer> vals = Observable.range(1,10);
vals.flatMap(val -> Observable.just(val)
.subscribeOn(Schedulers.computation())
.map(i -> intenseCalculation(i))
).subscribe(val -> System.out.println(val));
Now you can do:
Flowable<Integer> vals = Flowable.range(1, 10);
vals.parallel()
.runOn(Schedulers.computation())
.map(i -> intenseCalculation(i))
.sequential()
.subscribe(val -> System.out.println(val));
You have to specify subscribeOn(Schedulers.computation())
instead of observeOn(Schedulers.computation())
for that purpose.
In subscribeOn
you declare in which thread you are going to emit your values.
In observeOn
you declare in which thread you are going to handle and observe them.
Using flatMap
and specify to subscribe on Schedulers.computation()
will achieve concurrency.
Here is a more practical example using Callable
, from the output, we can see it will take about 2000 milliseconds to finish all the tasks.
static class MyCallable implements Callable<Integer> {
private static final Object CALLABLE_COUNT_LOCK = new Object();
private static int callableCount;
@Override
public Integer call() throws Exception {
Thread.sleep(2000);
synchronized (CALLABLE_COUNT_LOCK) {
return callableCount++;
}
}
public static int getCallableCount() {
synchronized (CALLABLE_COUNT_LOCK) {
return callableCount;
}
}
}
private static void runMyCallableConcurrentlyWithRxJava() {
long startTimeMillis = System.currentTimeMillis();
final Semaphore semaphore = new Semaphore(1);
try {
semaphore.acquire();
} catch (InterruptedException e) {
e.printStackTrace();
}
Observable.just(new MyCallable(), new MyCallable(), new MyCallable(), new MyCallable())
.flatMap(new Function<MyCallable, ObservableSource<?>>() {
@Override
public ObservableSource<?> apply(@NonNull MyCallable myCallable) throws Exception {
return Observable.fromCallable(myCallable).subscribeOn(Schedulers.computation());
}
})
.subscribeOn(Schedulers.computation())
.subscribe(new Observer<Object>() {
@Override
public void onSubscribe(@NonNull Disposable d) {
}
@Override
public void onNext(@NonNull Object o) {
System.out.println("onNext " + o);
}
@Override
public void onError(@NonNull Throwable e) {
}
@Override
public void onComplete() {
if (MyCallable.getCallableCount() >= 4) {
semaphore.release();
}
}
});
try {
semaphore.acquire();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
System.out.println("durationMillis " + (System.currentTimeMillis()-startTimeMillis));
}
This still comes in the same sequence. Even on new threads
Observable<Integer> ob3 = Observable.range(1, 5);
ob3.flatMap(new Func1<Integer, Observable<Integer>>() {
@Override
public Observable<Integer> call(Integer pArg0) {
return Observable.just(pArg0);
}
}).subscribeOn(Schedulers.newThread()).map(new Func1<Integer, Integer>() {
@Override
public Integer call(Integer pArg0) {
try {
Thread.sleep(1000 - (pArg0 * 100));
System.out.println(pArg0 + " ccc " + Thread.currentThread().getName());
} catch (Exception e) {
e.printStackTrace();
}
return pArg0;
}
}).subscribe();
Output
1 ccc RxNewThreadScheduler-1
2 ccc RxNewThreadScheduler-1
3 ccc RxNewThreadScheduler-1
4 ccc RxNewThreadScheduler-1
5 ccc RxNewThreadScheduler-1