If you have an R data.table that has missing values, how do you replace all of them with say, the value 0? E.g.
aa = data.table(V1=1:10,V2=c(1,2,2,3,3,3,4,4,
The specific problem OP is posting could also be solved by
tt[is.na(X), X := 0]
Nothing unusual here:
tt[is.na(tt)] = 0
..will work.
This is somewhat confusing however given that:
tt[is.na(tt)]
...currently returns:
Error in
[.data.table
(tt, is.na(tt)) : i is invalid type (matrix). Perhaps in future a 2 column matrix could return a list of elements of DT (in the spirit of A[B] in FAQ 2.14). Please let datatable-help know if you'd like this, or add your comments to FR #1611.
I would make use of data.table
and lapply
, namely:
tt[,lapply(.SD,function(kkk) ifelse(is.na(kkk),-666,kkk)),.SDcols=names(tt)]
yielding in:
V1 X V2
1: 1 -666 1
2: 2 -666 2
3: 3 a 2
4: 4 b 3
5: 5 c 3
6: 6 d 3
7: 7 -666 4
8: 8 -666 4
9: 9 -666 4
10: 10 -666 4
is.na
(being a primitive) has relatively very less overhead and is usually quite fast. So, you can just loop through the columns and use set
to replace NA with
0`.
Using <-
to assign will result in a copy of all the columns and this is not the idiomatic way using data.table
.
First I'll illustrate as to how to do it and then show how slow this can get on huge data (due to the copy):
for (i in seq_along(tt)) set(tt, i=which(is.na(tt[[i]])), j=i, value=0)
You'll get a warning here that "0" is being coerced to character to match the type of column. You can ignore it.
<-
here:# by reference - idiomatic way
set.seed(45)
tt <- data.table(matrix(sample(c(NA, rnorm(10)), 1e7*3, TRUE), ncol=3))
tracemem(tt)
# modifies value by reference - no copy
system.time({
for (i in seq_along(tt))
set(tt, i=which(is.na(tt[[i]])), j=i, value=0)
})
# user system elapsed
# 0.284 0.083 0.386
# by copy - NOT the idiomatic way
set.seed(45)
tt <- data.table(matrix(sample(c(NA, rnorm(10)), 1e7*3, TRUE), ncol=3))
tracemem(tt)
# makes copy
system.time({tt[is.na(tt)] <- 0})
# a bunch of "tracemem" output showing the copies being made
# user system elapsed
# 4.110 0.976 5.187