What is the main purpose of using CROSS APPLY?
I have read (vaguely, through posts on the Internet) that cross apply
can be more efficient when selectin
While most queries which employ CROSS APPLY can be rewritten using an INNER JOIN, CROSS APPLY can yield better execution plan and better performance, since it can limit the set being joined yet before the join occurs.
Stolen from Here
Consider you have two tables.
MASTER TABLE
x------x--------------------x
| Id | Name |
x------x--------------------x
| 1 | A |
| 2 | B |
| 3 | C |
x------x--------------------x
DETAILS TABLE
x------x--------------------x-------x
| Id | PERIOD | QTY |
x------x--------------------x-------x
| 1 | 2014-01-13 | 10 |
| 1 | 2014-01-11 | 15 |
| 1 | 2014-01-12 | 20 |
| 2 | 2014-01-06 | 30 |
| 2 | 2014-01-08 | 40 |
x------x--------------------x-------x
There are many situations where we need to replace INNER JOIN
with CROSS APPLY
.
1. Join two tables based on TOP n
results
Consider if we need to select Id
and Name
from Master
and last two dates for each Id
from Details table
.
SELECT M.ID,M.NAME,D.PERIOD,D.QTY
FROM MASTER M
INNER JOIN
(
SELECT TOP 2 ID, PERIOD,QTY
FROM DETAILS D
ORDER BY CAST(PERIOD AS DATE)DESC
)D
ON M.ID=D.ID
The above query generates the following result.
x------x---------x--------------x-------x
| Id | Name | PERIOD | QTY |
x------x---------x--------------x-------x
| 1 | A | 2014-01-13 | 10 |
| 1 | A | 2014-01-12 | 20 |
x------x---------x--------------x-------x
See, it generated results for last two dates with last two date's Id
and then joined these records only in the outer query on Id
, which is wrong. This should be returning both Ids
1 and 2 but it returned only 1 because 1 has the last two dates. To accomplish this, we need to use CROSS APPLY
.
SELECT M.ID,M.NAME,D.PERIOD,D.QTY
FROM MASTER M
CROSS APPLY
(
SELECT TOP 2 ID, PERIOD,QTY
FROM DETAILS D
WHERE M.ID=D.ID
ORDER BY CAST(PERIOD AS DATE)DESC
)D
and forms the following result.
x------x---------x--------------x-------x
| Id | Name | PERIOD | QTY |
x------x---------x--------------x-------x
| 1 | A | 2014-01-13 | 10 |
| 1 | A | 2014-01-12 | 20 |
| 2 | B | 2014-01-08 | 40 |
| 2 | B | 2014-01-06 | 30 |
x------x---------x--------------x-------x
Here's how it works. The query inside CROSS APPLY
can reference the outer table, where INNER JOIN
cannot do this (it throws compile error). When finding the last two dates, joining is done inside CROSS APPLY
i.e., WHERE M.ID=D.ID
.
2. When we need INNER JOIN
functionality using functions.
CROSS APPLY
can be used as a replacement with INNER JOIN
when we need to get result from Master
table and a function
.
SELECT M.ID,M.NAME,C.PERIOD,C.QTY
FROM MASTER M
CROSS APPLY dbo.FnGetQty(M.ID) C
And here is the function
CREATE FUNCTION FnGetQty
(
@Id INT
)
RETURNS TABLE
AS
RETURN
(
SELECT ID,PERIOD,QTY
FROM DETAILS
WHERE ID=@Id
)
which generated the following result
x------x---------x--------------x-------x
| Id | Name | PERIOD | QTY |
x------x---------x--------------x-------x
| 1 | A | 2014-01-13 | 10 |
| 1 | A | 2014-01-11 | 15 |
| 1 | A | 2014-01-12 | 20 |
| 2 | B | 2014-01-06 | 30 |
| 2 | B | 2014-01-08 | 40 |
x------x---------x--------------x-------x
ADDITIONAL ADVANTAGE OF CROSS APPLY
APPLY
can be used as a replacement for UNPIVOT
. Either CROSS APPLY
or OUTER APPLY
can be used here, which are interchangeable.
Consider you have the below table(named MYTABLE
).
x------x-------------x--------------x
| Id | FROMDATE | TODATE |
x------x-------------x--------------x
| 1 | 2014-01-11 | 2014-01-13 |
| 1 | 2014-02-23 | 2014-02-27 |
| 2 | 2014-05-06 | 2014-05-30 |
| 3 | NULL | NULL |
x------x-------------x--------------x
The query is below.
SELECT DISTINCT ID,DATES
FROM MYTABLE
CROSS APPLY(VALUES (FROMDATE),(TODATE))
COLUMNNAMES(DATES)
which brings you the result
x------x-------------x
| Id | DATES |
x------x-------------x
| 1 | 2014-01-11 |
| 1 | 2014-01-13 |
| 1 | 2014-02-23 |
| 1 | 2014-02-27 |
| 2 | 2014-05-06 |
| 2 | 2014-05-30 |
| 3 | NULL |
x------x-------------x
Here's a brief tutorial that can be saved in a .sql
file and executed in SSMS that I wrote for myself to quickly refresh my memory on how CROSS APPLY
works and when to use it:
-- Here's the key to understanding CROSS APPLY: despite the totally different name, think of it as being like an advanced 'basic join'.
-- A 'basic join' gives the Cartesian product of the rows in the tables on both sides of the join: all rows on the left joined with all rows on the right.
-- The formal name of this join in SQL is a CROSS JOIN. You now start to understand why they named the operator CROSS APPLY.
-- Given the following (very) simple tables and data:
CREATE TABLE #TempStrings ([SomeString] [nvarchar](10) NOT NULL);
CREATE TABLE #TempNumbers ([SomeNumber] [int] NOT NULL);
CREATE TABLE #TempNumbers2 ([SomeNumber] [int] NOT NULL);
INSERT INTO #TempStrings VALUES ('111'); INSERT INTO #TempStrings VALUES ('222');
INSERT INTO #TempNumbers VALUES (111); INSERT INTO #TempNumbers VALUES (222);
INSERT INTO #TempNumbers2 VALUES (111); INSERT INTO #TempNumbers2 VALUES (222); INSERT INTO #TempNumbers2 VALUES (222);
-- Basic join is like CROSS APPLY; 2 rows on each side gives us an output of 4 rows, but 2 rows on the left and 0 on the right gives us an output of 0 rows:
SELECT
st.SomeString, nbr.SomeNumber
FROM -- Basic join ('CROSS JOIN')
#TempStrings st, #TempNumbers nbr
-- Note: this also works:
--#TempStrings st CROSS JOIN #TempNumbers nbr
-- Basic join can be used to achieve the functionality of INNER JOIN by first generating all row combinations and then whittling them down with a WHERE clause:
SELECT
st.SomeString, nbr.SomeNumber
FROM -- Basic join ('CROSS JOIN')
#TempStrings st, #TempNumbers nbr
WHERE
st.SomeString = nbr.SomeNumber
-- However, for increased readability, the SQL standard introduced the INNER JOIN ... ON syntax for increased clarity; it brings the columns that two tables are
-- being joined on next to the JOIN clause, rather than having them later on in the WHERE clause. When multiple tables are being joined together, this makes it
-- much easier to read which columns are being joined on which tables; but make no mistake, the following syntax is *semantically identical* to the above syntax:
SELECT
st.SomeString, nbr.SomeNumber
FROM -- Inner join
#TempStrings st INNER JOIN #TempNumbers nbr ON st.SomeString = nbr.SomeNumber
-- Because CROSS APPLY is generally used with a subquery, the subquery's WHERE clause will appear next to the join clause (CROSS APPLY), much like the aforementioned
-- 'ON' keyword appears next to the INNER JOIN clause. In this sense, then, CROSS APPLY combined with a subquery that has a WHERE clause is like an INNER JOIN with
-- an ON keyword, but more powerful because it can be used with subqueries (or table-valued functions, where said WHERE clause can be hidden inside the function).
SELECT
st.SomeString, nbr.SomeNumber
FROM
#TempStrings st CROSS APPLY (SELECT * FROM #TempNumbers tempNbr WHERE st.SomeString = tempNbr.SomeNumber) nbr
-- CROSS APPLY joins in the same way as a CROSS JOIN, but what is joined can be a subquery or table-valued function. You'll still get 0 rows of output if
-- there are 0 rows on either side, and in this sense it's like an INNER JOIN:
SELECT
st.SomeString, nbr.SomeNumber
FROM
#TempStrings st CROSS APPLY (SELECT * FROM #TempNumbers tempNbr WHERE 1 = 2) nbr
-- OUTER APPLY is like CROSS APPLY, except that if one side of the join has 0 rows, you'll get the values of the side that has rows, with NULL values for
-- the other side's columns. In this sense it's like a FULL OUTER JOIN:
SELECT
st.SomeString, nbr.SomeNumber
FROM
#TempStrings st OUTER APPLY (SELECT * FROM #TempNumbers tempNbr WHERE 1 = 2) nbr
-- One thing CROSS APPLY makes it easy to do is to use a subquery where you would usually have to use GROUP BY with aggregate functions in the SELECT list.
-- In the following example, we can get an aggregate of string values from a second table based on matching one of its columns with a value from the first
-- table - something that would have had to be done in the ON clause of the LEFT JOIN - but because we're now using a subquery thanks to CROSS APPLY, we
-- don't need to worry about GROUP BY in the main query and so we don't have to put all the SELECT values inside an aggregate function like MIN().
SELECT
st.SomeString, nbr.SomeNumbers
FROM
#TempStrings st CROSS APPLY (SELECT SomeNumbers = STRING_AGG(tempNbr.SomeNumber, ', ') FROM #TempNumbers2 tempNbr WHERE st.SomeString = tempNbr.SomeNumber) nbr
-- ^ First the subquery is whittled down with the WHERE clause, then the aggregate function is applied with no GROUP BY clause; this means all rows are
-- grouped into one, and the aggregate function aggregates them all, in this case building a comma-delimited string containing their values.
DROP TABLE #TempStrings;
DROP TABLE #TempNumbers;
DROP TABLE #TempNumbers2;
Cross apply can be used to replace subquery's where you need a column of the subquery
subquery
select * from person p where
p.companyId in(select c.companyId from company c where c.companyname like '%yyy%')
here i won't be able to select the columns of company table so, using cross apply
select P.*,T.CompanyName
from Person p
cross apply (
select *
from Company C
where p.companyid = c.companyId and c.CompanyName like '%yyy%'
) T
This has already been answered very well technically, but let me give a concrete example of how it's extremely useful:
Lets say you have two tables, Customer and Order. Customers have many Orders.
I want to create a view that gives me details about customers, and the most recent order they've made. With just JOINS, this would require some self-joins and aggregation which isn't pretty. But with Cross Apply, its super easy:
SELECT *
FROM Customer
CROSS APPLY (
SELECT TOP 1 *
FROM Order
WHERE Order.CustomerId = Customer.CustomerId
ORDER BY OrderDate DESC
) T
It seems to me that CROSS APPLY can fill a certain gap when working with calculated fields in complex/nested queries, and make them simpler and more readable.
Simple example: you have a DoB and you want to present multiple age-related fields that will also rely on other data sources (such as employment), like Age, AgeGroup, AgeAtHiring, MinimumRetirementDate, etc. for use in your end-user application (Excel PivotTables, for example).
Options are limited and rarely elegant:
JOIN subqueries cannot introduce new values in the dataset based on data in the parent query (it must stand on its own).
UDFs are neat, but slow as they tend to prevent parallel operations. And being a separate entity can be a good (less code) or a bad (where is the code) thing.
Junction tables. Sometimes they can work, but soon enough you're joining subqueries with tons of UNIONs. Big mess.
Create yet another single-purpose view, assuming your calculations don't require data obtained mid-way through your main query.
Intermediary tables. Yes... that usually works, and often a good option as they can be indexed and fast, but performance can also drop due to to UPDATE statements not being parallel and not allowing to cascade formulas (reuse results) to update several fields within the same statement. And sometimes you'd just prefer to do things in one pass.
Nesting queries. Yes at any point you can put parenthesis on your entire query and use it as a subquery upon which you can manipulate source data and calculated fields alike. But you can only do this so much before it gets ugly. Very ugly.
Repeating code. What is the greatest value of 3 long (CASE...ELSE...END) statements? That's gonna be readable!
Did I miss something? Probably, so feel free to comment. But hey, CROSS APPLY is like a godsend in such situations: you just add a simple CROSS APPLY (select tbl.value + 1 as someFormula) as crossTbl
and voilà! Your new field is now ready for use practically like it had always been there in your source data.
Values introduced through CROSS APPLY can...
CROSS APPLY (select crossTbl.someFormula + 1 as someMoreFormula) as crossTbl2
Dang, there's nothing they can't do!