So in Java, we can do How to measure time taken by a function to execute
But how is it done in python? To measure the time start and end time between lines of codes?
If you want to measure CPU time, can use time.process_time() for Python 3.3 and above:
import time
start = time.process_time()
# your code here
print(time.process_time() - start)
First call turns the timer on, and second call tells you how many seconds have elapsed.
There is also a function time.clock()
, but it is deprecated since Python 3.3 and will be removed in Python 3.8.
There are better profiling tools like timeit
and profile
, however time.process_time() will measure the CPU time and this is what you're are asking about.
If you want to measure wall clock time instead, use time.time()
.
Putting the code in a function, then using a decorator for timing is another option. (Source) The advantage of this method is that you define timer once and use it with a simple additional line for every function.
First, define timer
decorator:
import functools
import time
def timer(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.perf_counter()
value = func(*args, **kwargs)
end_time = time.perf_counter()
run_time = end_time - start_time
print("Finished {} in {} secs".format(repr(func.__name__), round(run_time, 3)))
return value
return wrapper
Then, use the decorator while defining the function:
@timer
def doubled_and_add(num):
res = sum([i*2 for i in range(num)])
print("Result : {}".format(res))
Let's try:
doubled_and_add(100000)
doubled_and_add(1000000)
Output:
Result : 9999900000
Finished 'doubled_and_add' in 0.0119 secs
Result : 999999000000
Finished 'doubled_and_add' in 0.0897 secs
Note: I'm not sure why to use time.perf_counter
instead of time.time
. Comments are welcome.
You can also use time
library:
import time
start = time.time()
# your code
# end
print(f'Time: {time.time() - start}')
You can try this as well:
from time import perf_counter
t0 = perf_counter()
...
t1 = perf_counter()
time_taken = t1 - t0
With a help of a small convenience class, you can measure time spent in indented lines like this:
with CodeTimer():
line_to_measure()
another_line()
# etc...
Which will show the following after the indented line(s) finishes executing:
Code block took: x.xxx ms
UPDATE: You can now get the class with pip install linetimer
and then from linetimer import CodeTimer
. See this GitHub project.
The code for above class:
import timeit
class CodeTimer:
def __init__(self, name=None):
self.name = " '" + name + "'" if name else ''
def __enter__(self):
self.start = timeit.default_timer()
def __exit__(self, exc_type, exc_value, traceback):
self.took = (timeit.default_timer() - self.start) * 1000.0
print('Code block' + self.name + ' took: ' + str(self.took) + ' ms')
You could then name the code blocks you want to measure:
with CodeTimer('loop 1'):
for i in range(100000):
pass
with CodeTimer('loop 2'):
for i in range(100000):
pass
Code block 'loop 1' took: 4.991 ms
Code block 'loop 2' took: 3.666 ms
And nest them:
with CodeTimer('Outer'):
for i in range(100000):
pass
with CodeTimer('Inner'):
for i in range(100000):
pass
for i in range(100000):
pass
Code block 'Inner' took: 2.382 ms
Code block 'Outer' took: 10.466 ms
Regarding timeit.default_timer()
, it uses the best timer based on OS and Python version, see this answer.
I always prefer to check time in hours, minutes and seconds (%H:%M:%S) format:
from datetime import datetime
start = datetime.now()
# your code
end = datetime.now()
time_taken = end - start
print('Time: ',time_taken)
output:
Time: 0:00:00.000019