What is the most efficient way of serializing a numpy array using simplejson?
If you want to apply Russ's method to n-dimensional numpy arrays you can try this
class NumpyAwareJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, numpy.ndarray):
if obj.ndim == 1:
return obj.tolist()
else:
return [self.default(obj[i]) for i in range(obj.shape[0])]
return json.JSONEncoder.default(self, obj)
This will simply turn a n-dimensional array into a list of lists with depth "n". To cast such lists back into a numpy array, my_nparray = numpy.array(my_list)
will work regardless of the list "depth".
In order to keep dtype and dimension try this:
import base64
import json
import numpy as np
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
"""If input object is an ndarray it will be converted into a dict
holding dtype, shape and the data, base64 encoded.
"""
if isinstance(obj, np.ndarray):
if obj.flags['C_CONTIGUOUS']:
obj_data = obj.data
else:
cont_obj = np.ascontiguousarray(obj)
assert(cont_obj.flags['C_CONTIGUOUS'])
obj_data = cont_obj.data
data_b64 = base64.b64encode(obj_data)
return dict(__ndarray__=data_b64,
dtype=str(obj.dtype),
shape=obj.shape)
# Let the base class default method raise the TypeError
super(NumpyEncoder, self).default(obj)
def json_numpy_obj_hook(dct):
"""Decodes a previously encoded numpy ndarray with proper shape and dtype.
:param dct: (dict) json encoded ndarray
:return: (ndarray) if input was an encoded ndarray
"""
if isinstance(dct, dict) and '__ndarray__' in dct:
data = base64.b64decode(dct['__ndarray__'])
return np.frombuffer(data, dct['dtype']).reshape(dct['shape'])
return dct
expected = np.arange(100, dtype=np.float)
dumped = json.dumps(expected, cls=NumpyEncoder)
result = json.loads(dumped, object_hook=json_numpy_obj_hook)
# None of the following assertions will be broken.
assert result.dtype == expected.dtype, "Wrong Type"
assert result.shape == expected.shape, "Wrong Shape"
assert np.allclose(expected, result), "Wrong Values"
Improving On Russ's answer, I would also include the np.generic scalars:
class NumpyAwareJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray) and obj.ndim == 1:
return obj.tolist()
elif isinstance(obj, np.generic):
return obj.item()
return json.JSONEncoder.default(self, obj)