Shading a kernel density plot between two points.

前端 未结 5 1421
佛祖请我去吃肉
佛祖请我去吃肉 2020-11-22 06:59

I frequently use kernel density plots to illustrate distributions. These are easy and fast to create in R like so:

set.seed(1)
draws <- rnorm(100)^2
dens          


        
相关标签:
5条回答
  • 2020-11-22 07:10

    With the polygon() function, see its help page and I believe we had similar questions here too.

    You need to find the index of the quantile values to get the actual (x,y) pairs.

    Edit: Here you go:

    x1 <- min(which(dens$x >= q75))  
    x2 <- max(which(dens$x <  q95))
    with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
    

    Output (added by JDL)

    0 讨论(0)
  • 2020-11-22 07:12

    An expanded solution:

    If you wanted to shade both tails (copy & paste of Dirk's code) and use known x values:

    set.seed(1)
    draws <- rnorm(100)^2
    dens <- density(draws)
    plot(dens)
    
    q2     <- 2
    q65    <- 6.5
    qn08   <- -0.8
    qn02   <- -0.2
    
    x1 <- min(which(dens$x >= q2))  
    x2 <- max(which(dens$x <  q65))
    x3 <- min(which(dens$x >= qn08))  
    x4 <- max(which(dens$x <  qn02))
    
    with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
    with(dens, polygon(x=c(x[c(x3,x3:x4,x4)]), y= c(0, y[x3:x4], 0), col="gray"))
    

    Result:

    2-tailed poly

    0 讨论(0)
  • 2020-11-22 07:18

    Another solution:

    dd <- with(dens,data.frame(x,y))
    
    library(ggplot2)
    
    qplot(x,y,data=dd,geom="line")+
      geom_ribbon(data=subset(dd,x>q75 & x<q95),aes(ymax=y),ymin=0,
                  fill="red",colour=NA,alpha=0.5)
    

    Result:

    alt text

    0 讨论(0)
  • 2020-11-22 07:21

    This question needs a lattice answer. Here's a very basic one, simply adapting the method employed by Dirk and others:

    #Set up the data
    set.seed(1)
    draws <- rnorm(100)^2
    dens <- density(draws)
    
    #Put in a simple data frame   
    d <- data.frame(x = dens$x, y = dens$y)
    
    #Define a custom panel function;
    # Options like color don't need to be hard coded    
    shadePanel <- function(x,y,shadeLims){
        panel.lines(x,y)
        m1 <- min(which(x >= shadeLims[1]))
        m2 <- max(which(x <= shadeLims[2]))
        tmp <- data.frame(x1 = x[c(m1,m1:m2,m2)], y1 = c(0,y[m1:m2],0))
        panel.polygon(tmp$x1,tmp$y1,col = "blue")
    }
    
    #Plot
    xyplot(y~x,data = d, panel = shadePanel, shadeLims = c(1,3))
    

    enter image description here

    0 讨论(0)
  • 2020-11-22 07:26

    Here's another ggplot2 variant based on a function that approximates the kernel density at the original data values:

    approxdens <- function(x) {
        dens <- density(x)
        f <- with(dens, approxfun(x, y))
        f(x)
    }
    

    Using the original data (rather than producing a new data frame with the density estimate's x and y values) has the benefit of also working in faceted plots where the quantile values depend on the variable by which the data is being grouped:

    Code used

    library(tidyverse)
    library(RColorBrewer)
    
    # dummy data
    set.seed(1)
    n <- 1e2
    dt <- tibble(value = rnorm(n)^2)
    
    # function that approximates the density at the provided values
    approxdens <- function(x) {
        dens <- density(x)
        f <- with(dens, approxfun(x, y))
        f(x)
    }
    
    probs <- c(0.75, 0.95)
    
    dt <- dt %>%
        mutate(dy = approxdens(value),                         # calculate density
               p = percent_rank(value),                        # percentile rank 
               pcat = as.factor(cut(p, breaks = probs,         # percentile category based on probs
                                    include.lowest = TRUE)))
    
    ggplot(dt, aes(value, dy)) +
        geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
        geom_line() +
        scale_fill_brewer(guide = "none") +
        theme_bw()
    
    
    
    # dummy data with 2 groups
    dt2 <- tibble(category = c(rep("A", n), rep("B", n)),
                  value = c(rnorm(n)^2, rnorm(n, mean = 2)))
    
    dt2 <- dt2 %>%
        group_by(category) %>% 
        mutate(dy = approxdens(value),    
               p = percent_rank(value),
               pcat = as.factor(cut(p, breaks = probs,
                                    include.lowest = TRUE)))
    
    # faceted plot
    ggplot(dt2, aes(value, dy)) +
        geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
        geom_line() +
        facet_wrap(~ category, nrow = 2, scales = "fixed") +
        scale_fill_brewer(guide = "none") +
        theme_bw()
    

    Created on 2018-07-13 by the reprex package (v0.2.0).

    0 讨论(0)
提交回复
热议问题