Python functools.wraps equivalent for classes

前端 未结 5 1674
予麋鹿
予麋鹿 2020-12-04 09:13

When defining a decorator using a class, how do I automatically transfer over__name__, __module__ and __doc__? Normally, I would use

相关标签:
5条回答
  • 2020-12-04 09:43

    Another solution using inheritance:

    import functools
    import types
    
    class CallableClassDecorator:
        """Base class that extracts attributes and assigns them to self.
    
        By default the extracted attributes are:
             ['__doc__', '__name__', '__module__'].
        """
    
        def __init__(self, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS):
            for attr in assigned:
                setattr(self, attr, getattr(wrapped, attr))
            super().__init__()
    
        def __get__(self, obj, objtype):
            return types.MethodType(self.__call__, obj)
    

    And, usage:

    class memoized(CallableClassDecorator):
        """Decorator that caches a function's return value each time it is called.
        If called later with the same arguments, the cached value is returned, and
        not re-evaluated.
        """
        def __init__(self, function):
            super().__init__(function)
            self.function = function
            self.cache = {}
    
        def __call__(self, *args):
            try:
                return self.cache[args]
            except KeyError:
                value = self.function(*args)
                self.cache[args] = value
                return value
            except TypeError:
                # uncacheable -- for instance, passing a list as an argument.
                # Better to not cache than to blow up entirely.
                return self.function(*args)
    
    0 讨论(0)
  • 2020-12-04 09:45

    I needed something that would wrap both classes and functions and wrote this:

    def wrap_is_timeout(base):
        '''Adds `.is_timeout=True` attribute to objects returned by `base()`.
    
        When `base` is class, it returns a subclass with same name and adds read-only property.
        Otherwise, it returns a function that sets `.is_timeout` attribute on result of `base()` call.
    
        Wrappers make best effort to be transparent.
        '''
        if inspect.isclass(base):
            class wrapped(base):
                is_timeout = property(lambda _: True)
    
            for k in functools.WRAPPER_ASSIGNMENTS:
                v = getattr(base, k, _MISSING)
                if v is not _MISSING:
                    try:
                        setattr(wrapped, k, v)
                    except AttributeError:
                        pass
            return wrapped
    
        @functools.wraps(base)
        def fun(*args, **kwargs):
            ex = base(*args, **kwargs)
            ex.is_timeout = True
            return ex
        return fun
    
    0 讨论(0)
  • 2020-12-04 09:46

    I'm not aware of such things in stdlib, but we can create our own if we need to.

    Something like this can work :

    from functools import WRAPPER_ASSIGNMENTS
    
    
    def class_wraps(cls):
        """Update a wrapper class `cls` to look like the wrapped."""
    
        class Wrapper(cls):
            """New wrapper that will extend the wrapper `cls` to make it look like `wrapped`.
    
            wrapped: Original function or class that is beign decorated.
            assigned: A list of attribute to assign to the the wrapper, by default they are:
                 ['__doc__', '__name__', '__module__', '__annotations__'].
    
            """
    
            def __init__(self, wrapped, assigned=WRAPPER_ASSIGNMENTS):
                self.__wrapped = wrapped
                for attr in assigned:
                    setattr(self, attr, getattr(wrapped, attr))
    
                super().__init__(wrapped)
    
            def __repr__(self):
                return repr(self.__wrapped)
    
        return Wrapper
    

    Usage:

    @class_wraps
    class memoized:
        """Decorator that caches a function's return value each time it is called.
        If called later with the same arguments, the cached value is returned, and
        not re-evaluated.
        """
    
        def __init__(self, func):
            super().__init__()
            self.func = func
            self.cache = {}
    
        def __call__(self, *args):
            try:
                return self.cache[args]
            except KeyError:
                value = self.func(*args)
                self.cache[args] = value
                return value
            except TypeError:
                # uncacheable -- for instance, passing a list as an argument.
                # Better to not cache than to blow up entirely.
                return self.func(*args)
    
        def __get__(self, obj, objtype):
            return functools.partial(self.__call__, obj)
    
    
    @memoized
    def fibonacci(n):
        """fibonacci docstring"""
        if n in (0, 1):
           return n
        return fibonacci(n-1) + fibonacci(n-2)
    
    
    print(fibonacci)
    print("__doc__: ", fibonacci.__doc__)
    print("__name__: ", fibonacci.__name__)
    

    Output:

    <function fibonacci at 0x14627c0>
    __doc__:  fibonacci docstring
    __name__:  fibonacci
    

    EDIT:

    And if you are wondering why this wasn't included in the stdlib is because you can wrap your class decorator in a function decorator and use functools.wraps like this:

    def wrapper(f):
    
        memoize = memoized(f)
    
        @functools.wraps(f)
        def helper(*args, **kws):
            return memoize(*args, **kws)
    
        return helper
    
    
    @wrapper
    def fibonacci(n):
        """fibonacci docstring"""
        if n <= 1:
           return n
        return fibonacci(n-1) + fibonacci(n-2)
    
    0 讨论(0)
  • 2020-12-04 09:53

    Everyone seems to have missed the obvious solution.

    >>> import functools
    >>> class memoized(object):
        """Decorator that caches a function's return value each time it is called.
        If called later with the same arguments, the cached value is returned, and
        not re-evaluated.
        """
        def __init__(self, func):
            self.func = func
            self.cache = {}
            functools.update_wrapper(self, func)  ## TA-DA! ##
        def __call__(self, *args):
            pass  # Not needed for this demo.
    
    >>> @memoized
    def fibonacci(n):
        """fibonacci docstring"""
        pass  # Not needed for this demo.
    
    >>> fibonacci
    <__main__.memoized object at 0x0156DE30>
    >>> fibonacci.__name__
    'fibonacci'
    >>> fibonacci.__doc__
    'fibonacci docstring'
    
    0 讨论(0)
  • 2020-12-04 09:53

    All we really need to do is modify the behavior of the decorator so that it is "hygienic", i.e. it is attribute-preserving.

    #!/usr/bin/python3
    
    def hygienic(decorator):
        def new_decorator(original):
            wrapped = decorator(original)
            wrapped.__name__ = original.__name__
            wrapped.__doc__ = original.__doc__
            wrapped.__module__ = original.__module__
            return wrapped
        return new_decorator
    

    This is ALL you need. In general. It doesn't preserve the signature, but if you really want that you can use a library to do that. I also went ahead and rewrote the memoization code so that it works on keyword arguments as well. Also there was a bug where failure to convert it to a hashable tuple would make it not work in 100% of cases.

    Demo of rewritten memoized decorator with @hygienic modifying its behavior. memoized is now a function that wraps the original class, though you can (like the other answer) write a wrapping class instead, or even better, something which detects if it's a class and if so wraps the __init__ method.

    @hygienic
    class memoized:
        def __init__(self, func):
            self.func = func
            self.cache = {}
    
        def __call__(self, *args, **kw):
            try:
                key = (tuple(args), frozenset(kw.items()))
                if not key in self.cache:
                    self.cache[key] = self.func(*args,**kw)
                return self.cache[key]
            except TypeError:
                # uncacheable -- for instance, passing a list as an argument.
                # Better to not cache than to blow up entirely.
                return self.func(*args,**kw)
    

    In action:

    @memoized
    def f(a, b=5, *args, keyword=10):
        """Intact docstring!"""
        print('f was called!')
        return {'a':a, 'b':b, 'args':args, 'keyword':10}
    
    x=f(0)  
    #OUTPUT: f was called!
    print(x)
    #OUTPUT: {'a': 0, 'b': 5, 'keyword': 10, 'args': ()}                 
    
    y=f(0)
    #NO OUTPUT - MEANS MEMOIZATION IS WORKING
    print(y)
    #OUTPUT: {'a': 0, 'b': 5, 'keyword': 10, 'args': ()}          
    
    print(f.__name__)
    #OUTPUT: 'f'
    print(f.__doc__)
    #OUTPUT: 'Intact docstring!'
    
    0 讨论(0)
提交回复
热议问题