Here is my df:
Net Upper Lower Mid Zsore
Answer option
More than once a da
Maybe I'm missing something, but a lot of these answers seem overly complicated. You should be able to just set the columns within a single list:
Column to the front:
df = df[ ['Mid'] + [ col for col in df.columns if col != 'Mid' ] ]
Or if instead, you want to move it to the back:
df = df[ [ col for col in df.columns if col != 'Mid' ] + ['Mid'] ]
Or if you wanted to move more than one column:
cols_to_move = ['Mid', 'Zsore']
df = df[ cols_to_move + [ col for col in df.columns if col not in cols_to_move ] ]
You can use the df.reindex() function in pandas. df is
Net Upper Lower Mid Zsore
Answer option
More than once a day 0% 0.22% -0.12% 2 65
Once a day 0% 0.32% -0.19% 3 45
Several times a week 2% 2.45% 1.10% 4 78
Once a week 1% 1.63% -0.40% 6 65
define an list of column names
cols = df.columns.tolist()
cols
Out[13]: ['Net', 'Upper', 'Lower', 'Mid', 'Zsore']
move the column name to wherever you want
cols.insert(0, cols.pop(cols.index('Mid')))
cols
Out[16]: ['Mid', 'Net', 'Upper', 'Lower', 'Zsore']
then use df.reindex()
function to reorder
df = df.reindex(columns= cols)
out put is: df
Mid Upper Lower Net Zsore
Answer option
More than once a day 2 0.22% -0.12% 0% 65
Once a day 3 0.32% -0.19% 0% 45
Several times a week 4 2.45% 1.10% 2% 78
Once a week 6 1.63% -0.40% 1% 65
Here is a generic set of code that I frequently use to rearrange the position of columns. You may find it useful.
cols = df.columns.tolist()
n = int(cols.index('Mid'))
cols = [cols[n]] + cols[:n] + cols[n+1:]
df = df[cols]
The most simplist thing you can try is:
df=df[[ 'Mid', 'Upper', 'Lower', 'Net' , 'Zsore']]
I didn't like how I had to explicitly specify all the other column in the other solutions so this worked best for me. Though it might be slow for large dataframes...?
df = df.set_index('Mid').reset_index()
To reorder the rows of a DataFrame just use a list as follows.
df = df[['Mid', 'Net', 'Upper', 'Lower', 'Zsore']]
This makes it very obvious what was done when reading the code later. Also use:
df.columns
Out[1]: Index(['Net', 'Upper', 'Lower', 'Mid', 'Zsore'], dtype='object')
Then cut and paste to reorder.
For a DataFrame with many columns, store the list of columns in a variable and pop the desired column to the front of the list. Here is an example:
cols = [str(col_name) for col_name in range(1001)]
data = np.random.rand(10,1001)
df = pd.DataFrame(data=data, columns=cols)
mv_col = cols.pop(cols.index('77'))
df = df[[mv_col] + cols]
Now df.columns
has.
Index(['77', '0', '1', '2', '3', '4', '5', '6', '7', '8',
...
'991', '992', '993', '994', '995', '996', '997', '998', '999', '1000'],
dtype='object', length=1001)